Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Publication year range
1.
J Med Genet ; 61(3): 250-261, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38050128

ABSTRACT

BACKGROUND: Classic aniridia is a highly penetrant autosomal dominant disorder characterised by congenital absence of the iris, foveal hypoplasia, optic disc anomalies and progressive opacification of the cornea. >90% of cases of classic aniridia are caused by heterozygous, loss-of-function variants affecting the PAX6 locus. METHODS: Short-read whole genome sequencing was performed on 51 (39 affected) individuals from 37 different families who had screened negative for mutations in the PAX6 coding region. RESULTS: Likely causative mutations were identified in 22 out of 37 (59%) families. In 19 out of 22 families, the causative genomic changes have an interpretable deleterious impact on the PAX6 locus. Of these 19 families, 1 has a novel heterozygous PAX6 frameshift variant missed on previous screens, 4 have single nucleotide variants (SNVs) (one novel) affecting essential splice sites of PAX6 5' non-coding exons and 2 have deep intronic SNV (one novel) resulting in gain of a donor splice site. In 12 out of 19, the causative variants are large-scale structural variants; 5 have partial or whole gene deletions of PAX6, 3 have deletions encompassing critical PAX6 cis-regulatory elements, 2 have balanced inversions with disruptive breakpoints within the PAX6 locus and 2 have complex rearrangements disrupting PAX6. The remaining 3 of 22 families have deletions encompassing FOXC1 (a known cause of atypical aniridia). Seven of the causative variants occurred de novo and one cosegregated with familial aniridia. We were unable to establish inheritance status in the remaining probands. No plausibly causative SNVs were identified in PAX6 cis-regulatory elements. CONCLUSION: Whole genome sequencing proves to be an effective diagnostic test in most individuals with previously unexplained aniridia.


Subject(s)
Aniridia , Eye Abnormalities , Humans , PAX6 Transcription Factor/genetics , Aniridia/genetics , Mutation/genetics , Eye Abnormalities/genetics , Exons , Homeodomain Proteins/genetics , Eye Proteins/genetics , Pedigree
2.
J Med Genet ; 61(6): 503-519, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38471765

ABSTRACT

Rubinstein-Taybi syndrome (RTS) is an archetypical genetic syndrome that is characterised by intellectual disability, well-defined facial features, distal limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in either of two genes (CREBBP, EP300) which encode for the proteins CBP and p300, which both have a function in transcription regulation and histone acetylation. As a group of international experts and national support groups dedicated to the syndrome, we realised that marked heterogeneity currently exists in clinical and molecular diagnostic approaches and care practices in various parts of the world. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria for types of RTS (RTS1: CREBBP; RTS2: EP300), molecular investigations, long-term management of various particular physical and behavioural issues and care planning. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimisation of diagnostics and care.


Subject(s)
CREB-Binding Protein , E1A-Associated p300 Protein , Rubinstein-Taybi Syndrome , Rubinstein-Taybi Syndrome/genetics , Rubinstein-Taybi Syndrome/diagnosis , Rubinstein-Taybi Syndrome/therapy , Humans , CREB-Binding Protein/genetics , E1A-Associated p300 Protein/genetics , Consensus , Disease Management , Mutation
3.
Hum Mutat ; 43(7): 832-858, 2022 07.
Article in English | MEDLINE | ID: mdl-35332618

ABSTRACT

Achromatopsia (ACHM) is a congenital cone photoreceptor disorder characterized by impaired color discrimination, low visual acuity, photosensitivity, and nystagmus. To date, six genes have been associated with ACHM (CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6), the majority of these being implicated in the cone phototransduction cascade. CNGA3 encodes the CNGA3 subunit of the cyclic nucleotide-gated ion channel in cone photoreceptors and is one of the major disease-associated genes for ACHM. Herein, we provide a comprehensive overview of the CNGA3 variant spectrum in a cohort of 1060 genetically confirmed ACHM patients, 385 (36.3%) of these carrying "likely disease-causing" variants in CNGA3. Compiling our own genetic data with those reported in the literature and in public databases, we further extend the CNGA3 variant spectrum to a total of 316 variants, 244 of which we interpreted as "likely disease-causing" according to ACMG/AMP criteria. We report 48 novel "likely disease-causing" variants, 24 of which are missense substitutions underlining the predominant role of this mutation class in the CNGA3 variant spectrum. In addition, we provide extensive in silico analyses and summarize reported functional data of previously analyzed missense, nonsense and splicing variants to further advance the pathogenicity assessment of the identified variants.


Subject(s)
Color Vision Defects , Cyclic Nucleotide-Gated Cation Channels , Color Vision Defects/genetics , Cyclic Nucleotide-Gated Cation Channels/genetics , Humans , Mutation , Retinal Cone Photoreceptor Cells
4.
J Hum Genet ; 65(5): 487-491, 2020 May.
Article in English | MEDLINE | ID: mdl-32015378

ABSTRACT

Microphthalmia, anophthalmia, and anterior segment dysgenesis are severe ocular developmental defects. There is a wide genetic heterogeneity leading to these ocular malformations. By using whole genome, exome and targeted sequencing in patients with ocular developmental anomalies, six biallelic pathogenic variants (including five novel variants) were identified in the PXDN gene in four families with microphthalmia and anterior segment dysgenesis. Only 11 different mutations (11 families) have been described in this gene to date. The phenotype of these patients is variable in severity, ranging from cataract and developmental glaucoma to complex microphthalmia. Interestingly, two unrelated patients of our series presented with an ocular phenotype including aniridia and microspherophakia. However, despite various phenotypic presentations and types of mutations, no genotype-phenotype correlation could be made. Thus, this work improves our knowledge of the recessive phenotype associated with biallelic variants in this gene and highlights the importance of screening PXDN in patients with anterior segment dysgenesis with or without microphthalmia.


Subject(s)
Alleles , Eye Abnormalities/genetics , Microphthalmos/genetics , Mutation , Peroxidases/genetics , Eye Abnormalities/pathology , Female , Genetic Association Studies , Humans , Male , Microphthalmos/pathology
5.
Hum Genet ; 138(8-9): 1051-1069, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29974297

ABSTRACT

Two distinct syndromes arise from pathogenic variants in the X-linked gene BCOR (BCL-6 corepressor): oculofaciocardiodental (OFCD) syndrome, which affects females, and a severe microphthalmia ('Lenz'-type) syndrome affecting males. OFCD is an X-linked dominant syndrome caused by a variety of BCOR null mutations. As it manifests only in females, it is presumed to be lethal in males. The severe male X-linked recessive microphthalmia syndrome ('Lenz') usually includes developmental delay in addition to the eye findings and is caused by hypomorphic BCOR variants, mainly by a specific missense variant c.254C > T, p.(Pro85Leu). Here, we detail 16 new cases (11 females with 4 additional, genetically confirmed, affected female relatives; 5 male cases each with unaffected carrier mothers). We describe new variants and broaden the phenotypic description for OFCD to include neuropathy, muscle hypotonia, pituitary underdevelopment, brain atrophy, lipoma and the first description of childhood lymphoma in an OFCD case. Our male X-linked recessive cases show significant new phenotypes: developmental delay (without eye anomalies) in two affected half-brothers with a novel BCOR variant, and one male with high myopia, megalophthalmos, posterior embryotoxon, developmental delay, and heart and bony anomalies with a previously undescribed BCOR splice site variant. Our female OFCD cases and their affected female relatives showed variable features, but consistently had early onset cataracts. We show that a mosaic carrier mother manifested early cataract and dental anomalies. All female carriers of the male X-linked recessive cases for whom genetic confirmation was available showed skewed X-inactivation and were unaffected. In view of the extended phenotype, we suggest a new term of X-linked BCOR-related syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Cataract/congenital , Chromosomes, Human, X/genetics , Genes, X-Linked/genetics , Heart Septal Defects/genetics , Microphthalmos/genetics , Proto-Oncogene Proteins/genetics , Repressor Proteins/genetics , Adolescent , Adult , Cataract/genetics , Child, Preschool , Eye Abnormalities/genetics , Female , Genetic Variation/genetics , Heterozygote , Humans , Infant , Male , Phenotype , Syndrome , X Chromosome Inactivation/genetics , Young Adult
6.
Am J Hum Genet ; 98(5): 981-992, 2016 05 05.
Article in English | MEDLINE | ID: mdl-27108798

ABSTRACT

Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions.


Subject(s)
Aniridia/etiology , Aniridia/pathology , Cerebellar Ataxia/etiology , Cerebellar Ataxia/pathology , Genes, Dominant/genetics , Inositol 1,4,5-Trisphosphate Receptors/genetics , Intellectual Disability/etiology , Intellectual Disability/pathology , Mutation/genetics , Adolescent , Adult , Animals , Cells, Cultured , Child , Female , Humans , Inositol 1,4,5-Trisphosphate Receptors/chemistry , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Mice , Microscopy, Confocal , Middle Aged , Pedigree , Protein Conformation
7.
Hum Brain Mapp ; 40(7): 2125-2142, 2019 05.
Article in English | MEDLINE | ID: mdl-30653778

ABSTRACT

The execution of coordinated hand movements requires complex interactions between premotor and primary motor areas in the two hemispheres. The supplementary motor area (SMA) is involved in movement preparation and bimanual coordination. How the SMA controls bimanual coordination remains unclear, although there is evidence suggesting that the SMA could modulate interhemispheric interactions. With a delayed-response task, we investigated interhemispheric interactions underlying normal movement preparation and the role of the SMA in these interactions during the delay period of unimanual or bimanual hand movements. We used functional MRI and transcranial magnetic stimulation in 22 healthy volunteers (HVs), and then in two models of SMA dysfunction: (a) in the same group of HVs after transient disruption of the right SMA proper by continuous transcranial magnetic theta-burst stimulation; (b) in a group of 22 patients with congenital mirror movements (CMM), whose inability to produce asymmetric hand movements is associated with SMA dysfunction. In HVs, interhemispheric connectivity during the delay period was modulated according to whether or not hand coordination was required for the forthcoming movement. In HVs following SMA disruption and in CMM patients, interhemispheric connectivity was modified during the delay period and the interhemispheric inhibition was decreased. Using two models of SMA dysfunction, we showed that the SMA modulates interhemispheric interactions during movement preparation. This unveils a new role for the SMA and highlights its importance in coordinated movement preparation.


Subject(s)
Functional Laterality/physiology , Intention , Motor Cortex/diagnostic imaging , Motor Cortex/physiology , Movement/physiology , Psychomotor Performance/physiology , Adolescent , Adult , Evoked Potentials, Motor/physiology , Female , Healthy Volunteers , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Movement Disorders/diagnostic imaging , Movement Disorders/physiopathology , Transcranial Magnetic Stimulation/methods , Young Adult
8.
Am J Hum Genet ; 94(5): 734-44, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24726473

ABSTRACT

Gordon syndrome (GS), or distal arthrogryposis type 3, is a rare, autosomal-dominant disorder characterized by cleft palate and congenital contractures of the hands and feet. Exome sequencing of five GS-affected families identified mutations in piezo-type mechanosensitive ion channel component 2 (PIEZO2) in each family. Sanger sequencing revealed PIEZO2 mutations in five of seven additional families studied (for a total of 10/12 [83%] individuals), and nine families had an identical c.8057G>A (p.Arg2686His) mutation. The phenotype of GS overlaps with distal arthrogryposis type 5 (DA5) and Marden-Walker syndrome (MWS). Using molecular inversion probes for targeted sequencing to screen PIEZO2, we found mutations in 24/29 (82%) DA5-affected families and one of two MWS-affected families. The presence of cleft palate was significantly associated with c.8057G>A (Fisher's exact test, adjusted p value < 0.0001). Collectively, although GS, DA5, and MWS have traditionally been considered separate disorders, our findings indicate that they are etiologically related and perhaps represent variable expressivity of the same condition.


Subject(s)
Abnormalities, Multiple/genetics , Arachnodactyly/genetics , Arthrogryposis/genetics , Blepharophimosis/genetics , Cleft Palate/genetics , Clubfoot/genetics , Connective Tissue Diseases/genetics , Contracture/genetics , Hand Deformities, Congenital/genetics , Ion Channels/genetics , Ophthalmoplegia/genetics , Retinal Diseases/genetics , Abnormalities, Multiple/pathology , Arachnodactyly/pathology , Arthrogryposis/pathology , Blepharophimosis/pathology , Child , Child, Preschool , Cleft Palate/pathology , Clubfoot/pathology , Connective Tissue Diseases/pathology , Contracture/pathology , Exome/genetics , Female , Hand Deformities, Congenital/pathology , Humans , Male , Mutation , Ophthalmoplegia/pathology , Pedigree , Retinal Diseases/pathology
9.
Hum Mutat ; 37(8): 786-93, 2016 08.
Article in English | MEDLINE | ID: mdl-27120018

ABSTRACT

Retinoic acid (RA) signaling plays a key role in the development and function of several systems in mammals. We previously discovered that the de novo mutations c.1159C>T (p.Arg387Cys) and c.1159C>A (p.Arg387Ser) in the RA Receptor Beta (RARB) gene cause microphthalmia and diaphragmatic hernia. However, the natural history of affected subjects beyond the prenatal or neonatal period was unknown. Here, we describe nine additional subjects with microphthalmia who have de novo mutations in RARB, including the previously described p.Arg387Cys as well as the novel c.887G>C (p.Gly296Ala) and c.638T>C (p.Leu213Pro). Moreover, we review the information on four previously reported cases. All subjects who survived the neonatal period (n = 10) displayed severe global developmental delay with progressive motor impairment due to spasticity and/or dystonia (with or without chorea). The majority of subjects also showed Chiari type I malformation and severe feeding difficulties. We previously found that p.Arg387Cys and p.Arg387Ser induce a gain-of-function. We show here that the p.Gly296Ala and p.Leu213Pro RARB mutations further promote the RA ligand-induced transcriptional activity by twofold to threefold over the wild-type receptor, also indicating a gain-of-function mechanism. These observations suggest that precise regulation of RA signaling is required for brain development and/or function in humans.


Subject(s)
Gain of Function Mutation , Intellectual Disability/genetics , Movement Disorders/genetics , Receptors, Retinoic Acid/genetics , Adolescent , Child , Child, Preschool , Dystonic Disorders , Female , Humans , Infant, Newborn , Male , Models, Molecular , Mutation, Missense , Protein Conformation , Receptors, Retinoic Acid/chemistry , Transcriptional Activation
10.
Am J Hum Genet ; 93(4): 765-72, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24075189

ABSTRACT

Anophthalmia and/or microphthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac defects are the main features of PDAC syndrome. Recessive mutations in STRA6, encoding a membrane receptor for the retinol-binding protein, have been identified in some cases with PDAC syndrome, although many cases have remained unexplained. Using whole-exome sequencing, we found that two PDAC-syndrome-affected siblings, but not their unaffected sibling, were compound heterozygous for nonsense (c.355C>T [p.Arg119(∗)]) and frameshift (c.1201_1202insCT [p.Ile403Serfs(∗)15]) mutations in retinoic acid receptor beta (RARB). Transfection studies showed that p.Arg119(∗) and p.Ile403Serfs(∗)15 altered RARB had no transcriptional activity in response to ligands, confirming that the mutations induced a loss of function. We then sequenced RARB in 15 subjects with anophthalmia and/or microphthalmia and at least one other feature of PDAC syndrome. Surprisingly, three unrelated subjects with microphthalmia and diaphragmatic hernia showed de novo missense mutations affecting the same codon; two of the subjects had the c.1159C>T (Arg387Cys) mutation, whereas the other one carried the c.1159C>A (p.Arg387Ser) mutation. We found that compared to the wild-type receptor, p.Arg387Ser and p.Arg387Cys altered RARB induced a 2- to 3-fold increase in transcriptional activity in response to retinoic acid ligands, suggesting a gain-of-function mechanism. Our study thus suggests that both recessive and dominant mutations in RARB cause anophthalmia and/or microphthalmia and diaphragmatic hernia, providing further evidence of the crucial role of the retinoic acid pathway during eye development and organogenesis.


Subject(s)
Hernia, Diaphragmatic/genetics , Microphthalmos/genetics , Mutation , Receptors, Retinoic Acid/genetics , Adolescent , Anophthalmos/genetics , Anophthalmos/metabolism , Exome , Female , Hernia, Diaphragmatic/metabolism , Humans , Infant, Newborn , Male , Microphthalmos/metabolism , Receptors, Retinoic Acid/metabolism , Retinol-Binding Proteins/genetics , Retinol-Binding Proteins/metabolism , Tretinoin/metabolism
11.
Am J Hum Genet ; 93(1): 141-9, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23810378

ABSTRACT

Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts.


Subject(s)
Growth Disorders/genetics , Hypercalcemia/genetics , Insulin Resistance/genetics , Metabolic Diseases/genetics , Nephrocalcinosis/genetics , Phosphatidylinositol 3-Kinases/metabolism , DNA Mutational Analysis , Exome , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Genetic Predisposition to Disease , Gestational Age , Glucose/metabolism , Glucose/pharmacology , Humans , Insulin/metabolism , Insulin/pharmacology , Male , Mutation , Pedigree , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
12.
Am J Hum Genet ; 85(5): 706-10, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19853239

ABSTRACT

Desbuquois dysplasia is a severe condition characterized by short stature, joint laxity, scoliosis, and advanced carpal ossification with a delta phalanx. Studying nine Desbuquois families, we identified seven distinct mutations in the Calcium-Activated Nucleotidase 1 gene (CANT1), which encodes a soluble UDP-preferring nucleotidase belonging to the apyrase family. Among the seven mutations, four were nonsense mutations (Del 5' UTR and exon 1, p.P245RfsX3, p.S303AfsX20, and p.W125X), and three were missense mutations (p.R300C, p.R300H, and p.P299L) responsible for the change of conserved amino acids located in the seventh nucleotidase conserved region (NRC). The arginine substitution at position 300 was identified in five out of nine families. The specific function of CANT1 is as yet unknown, but its substrates are involved in several major signaling functions, including Ca2+ release, through activation of pyrimidinergic signaling. Importantly, using RT-PCR analysis, we observed a specific expression in chondrocytes. We also found electron-dense material within distended rough endoplasmic reticulum in the fibroblasts of Desbuquois patients. Our findings demonstrate the specific involvement of a nucleotidase in the endochondral ossification process.


Subject(s)
Bone Diseases, Developmental/genetics , Calcium/metabolism , Mutation , Nucleotidases/genetics , 5' Untranslated Regions , Adolescent , Adult , Amino Acid Sequence , Amino Acid Substitution , Arginine/metabolism , Bone Diseases, Developmental/diagnostic imaging , Cells, Cultured , Child, Preschool , Chondrocytes/metabolism , Chromosomes, Human, Pair 17 , Codon, Nonsense , Consanguinity , Endoplasmic Reticulum, Rough/ultrastructure , Exons , Fatal Outcome , Female , Fibroblasts/ultrastructure , Homozygote , Humans , Infant , Infant, Newborn , Male , Molecular Sequence Data , Mutation, Missense , Nuclear Family , RNA, Messenger/metabolism , Radiography
13.
Am J Med Genet A ; 158A(10): 2430-8, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22903608

ABSTRACT

FOXC1 deletion, duplication, and mutations are associated with Axenfeld-Rieger anomaly, and Dandy-Walker malformation spectrum. We describe the clinical history, physical findings, and available brain imaging studies in three fetuses, two children, and one adult with 6p25 deletions encompassing FOXC1. Various combinations of ocular and cerebellar malformations were found. In all three fetuses, necropsy including detailed microscopic assessments of the eyes and brains showed ocular anterior segment dysgenesis suggestive of Axenfeld-Rieger anomaly. Five 6p25 deletions were terminal, including two derived from inherited reciprocal translocations; the remaining 6p25 deletion was interstitial. The size and breakpoints of these deletions were characterized using comparative genomic hybridization arrays. All six deletions included FOXC1. Our data confirm that FOXC1 haploinsufficiency plays a major role in the phenotype of patients with 6p25 deletions. Histopathological features of Axenfeld-Rieger anomaly were clearly identifiable before the beginning of the third-trimester of gestation.


Subject(s)
Cerebellar Diseases/pathology , Chromosomes, Human, Pair 6/genetics , Eye Abnormalities/pathology , Fetus/pathology , Forkhead Transcription Factors/genetics , Gene Deletion , Adult , Anterior Eye Segment/abnormalities , Anterior Eye Segment/pathology , Cerebellar Diseases/genetics , Child, Preschool , Comparative Genomic Hybridization , Dandy-Walker Syndrome/genetics , Dandy-Walker Syndrome/pathology , Eye Abnormalities/genetics , Eye Diseases, Hereditary , Female , Humans , In Situ Hybridization, Fluorescence , Male , Phenotype , Pregnancy
14.
Eur J Hum Genet ; 29(1): 131-140, 2021 01.
Article in English | MEDLINE | ID: mdl-32737437

ABSTRACT

Defects in optic fissure closure can lead to congenital ocular coloboma. This ocular malformation, often associated with microphthalmia, is described in various clinical forms with different inheritance patterns and genetic heterogeneity. In recent times, the identification of an increased number of genes involved in numerous cellular functions has led to a better understanding in optic fissure closure mechanisms. Nevertheless, most of these genes are also involved in wider eye growth defects such as micro-anophthalmia, questioning the mechanisms controlling both extension and severity of optic fissure closure defects. However, some genes, such as FZD5, have only been so far identified in isolated coloboma. Thus, to estimate the frequency of implication of different ocular genes, we screened a cohort of 50 patients affected by ocular coloboma by using targeted sequencing of 119 genes involved in ocular development. This analysis revealed seven heterozygous (likely) pathogenic variants in RARB, MAB21L2, RBP4, TFAP2A, and FZD5. Surprisingly, three out of the seven variants detected herein were novel disease-causing variants in FZD5 identified in three unrelated families with dominant inheritance. Although molecular diagnosis rate remains relatively low in patients with ocular coloboma (14% (7/50) in this work), these results, however, highlight the importance of genetic screening, especially of FZD5, in such patients. Indeed, in our series, FZD5 variants represent half of the genetic causes, constituting 6% (3/50) of the patients who benefited from a molecular diagnosis. Our findings support the involvement of FZD5 in ocular coloboma and provide clues for screening this gene during current diagnostic procedures.


Subject(s)
Coloboma/genetics , Frizzled Receptors/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Coloboma/pathology , Eye Proteins/genetics , Gene Frequency , Humans , Intracellular Signaling Peptides and Proteins/genetics , Middle Aged , Receptors, Retinoic Acid/genetics , Retinol-Binding Proteins, Plasma/genetics , Transcription Factor AP-2/genetics
15.
Mol Vis ; 16: 1705-11, 2010 Aug 22.
Article in English | MEDLINE | ID: mdl-20806047

ABSTRACT

PURPOSE: Aniridia and congenital cataract represent rare but severe developmental ocular conditions. We examined 33 probands from France for mutations in several transcription factors associated with these phenotypes, the forkhead box E3 (FOXE3), paired box gene 6 (PAX6), paired-like homeodomain transcription factor 2 (PITX2), and paired-like homeodomain transcription factor 3 (PITX3) genes. METHODS: Out of 33 probands, 27 were affected with congenital cataract while the remaining six were affected with aniridia (with or without cataract). The coding regions of FOXE3, PAX6, PITX2, and PITX3 were examined by direct DNA sequencing of gene-specific PCR products. RESULTS: A novel dominant mutation at the stop codon of FOXE3, c.959G>C (p.X320SerextX72), was identified in a patient with congenital cataract. Another novel FOXE3 sequence change, c.571-579dup (p.Tyr191_Pro193dup), was identified in a patient with aniridia, mild lens opacities, and some additional ocular defects; this patient was also found to carry a nonsense mutation in PAX6. PAX6 mutations were identified in two additional probands with aniridia and cataracts. None of the observed sequence alterations were found in normal controls. No mutations were identified in PITX2 or PITX3. CONCLUSIONS: The p.X320SerextX72 mutation is only the fourth FOXE3 allele associated with a dominant phenotype since the majority of FOXE3 mutations appear to be recessive with no phenotype observed in heterozygous carriers. The encoded protein is predicted to contain a complete normal sequence followed by seventy-two erroneous amino acids; the position and effect of this mutation are similar to two of the previously reported dominant changes, suggesting a common mechanism for dominant alleles. The p.Tyr191_Pro193dup is predicted to result in an in-frame duplication of three amino acids; however, the contribution of this mutation to the phenotype is unclear since the affected patient also carries a nonsense mutation in PAX6 which acts upstream of FOXE3 in the molecular pathway. The identified PAX6 mutations correspond to the two most commonly observed mutant alleles and demonstrate phenotypes that are consistent with the previously reported spectrum.


Subject(s)
Aniridia/complications , Aniridia/genetics , Cataract/congenital , Eye Proteins/genetics , Forkhead Transcription Factors/genetics , Genes, Dominant/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Paired Box Transcription Factors/genetics , Repressor Proteins/genetics , Amino Acid Sequence , Base Sequence , Cataract/complications , Cataract/genetics , DNA Mutational Analysis , Eye Proteins/chemistry , Forkhead Transcription Factors/chemistry , Homeodomain Proteins/chemistry , Humans , Molecular Sequence Data , PAX6 Transcription Factor , Paired Box Transcription Factors/chemistry , Repressor Proteins/chemistry , Sequence Alignment
16.
Nat Genet ; 49(4): 511-514, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28250454

ABSTRACT

Brain malformations involving the corpus callosum are common in children with developmental disabilities. We identified DCC mutations in four families and five sporadic individuals with isolated agenesis of the corpus callosum (ACC) without intellectual disability. DCC mutations result in variable dominant phenotypes with decreased penetrance, including mirror movements and ACC associated with a favorable developmental prognosis. Possible phenotypic modifiers include the type and location of mutation and the sex of the individual.


Subject(s)
Agenesis of Corpus Callosum/genetics , Developmental Disabilities/genetics , Mutation/genetics , Receptors, Cell Surface/genetics , Tumor Suppressor Proteins/genetics , Abnormalities, Multiple/genetics , Brain/pathology , Corpus Callosum/pathology , DCC Receptor , Family , Female , Humans , Male , Nervous System Malformations/genetics , Neural Stem Cells/pathology , Penetrance , Phenotype
17.
Eur J Hum Genet ; 14(6): 773-9, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16570074

ABSTRACT

Sensorineural hearing loss is the most frequent sensory deficit of childhood and is of genetic origin in up to 75% of cases. It has been shown that mutations of the SLC26A4 (PDS) gene were involved in syndromic deafness characterized by congenital sensorineural hearing impairment and goitre (Pendred's syndrome), as well as in congenital isolated deafness (DFNB4). While the prevalence of SLC26A4 mutations in Pendred's syndrome is clearly established, it remains to be studied in large cohorts of patients with nonsyndromic deafness and detailed clinical informations. In this report, 109 patients from 100 unrelated families, aged from 1 to 32 years (median age: 10 years), with nonsyndromic deafness and enlarged vestibular aqueduct, were genotyped for SLC26A4 using DHPLC molecular screening and sequencing. In all, 91 allelic variants were observed in 100 unrelated families, of which 19 have never been reported. The prevalence of SLC26A4 mutations was 40% (40/100), with biallelic mutation in 24% (24/100), while six families were homozygous. All patients included in this series had documented deafness, associated with EVA and without any evidence of syndromic disease. Among patients with SLC26A4 biallelic mutations, deafness was more severe, fluctuated more than in patients with no mutation. In conclusion, the incidence of SLC26A4 mutations is high in patients with isolated deafness and enlarged vestibular aqueduct and could represent up to 4% of nonsyndromic hearing impairment. SLC26A4 could be the second most frequent gene implicated in nonsyndromic deafness after GJB2, in this Caucasian population.


Subject(s)
Alleles , Hearing Loss, Sensorineural/genetics , Membrane Transport Proteins/genetics , Mutation , Vestibular Aqueduct/abnormalities , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Connexin 26 , Connexins/genetics , Deafness/congenital , Deafness/genetics , Deafness/pathology , Female , Goiter/genetics , Goiter/pathology , Hearing Loss, Sensorineural/pathology , Homozygote , Humans , Infant , Male , Prevalence , Sulfate Transporters , Syndrome , White People
18.
PLoS One ; 11(4): e0153757, 2016.
Article in English | MEDLINE | ID: mdl-27124303

ABSTRACT

We report molecular genetic analysis of 42 affected individuals referred with a diagnosis of aniridia who previously screened as negative for intragenic PAX6 mutations. Of these 42, the diagnoses were 31 individuals with aniridia and 11 individuals referred with a diagnosis of Gillespie syndrome (iris hypoplasia, ataxia and mild to moderate developmental delay). Array-based comparative genomic hybridization identified six whole gene deletions: four encompassing PAX6 and two encompassing FOXC1. Six deletions with plausible cis-regulatory effects were identified: five that were 3' (telomeric) to PAX6 and one within a gene desert 5' (telomeric) to PITX2. Sequence analysis of the FOXC1 and PITX2 coding regions identified two plausibly pathogenic de novo FOXC1 missense mutations (p.Pro79Thr and p.Leu101Pro). No intragenic mutations were detected in PITX2. FISH mapping in an individual with Gillespie-like syndrome with an apparently balanced X;11 reciprocal translocation revealed disruption of a gene at each breakpoint: ARHGAP6 on the X chromosome and PHF21A on chromosome 11. In the other individuals with Gillespie syndrome no mutations were identified in either of these genes, or in HCCS which lies close to the Xp breakpoint. Disruption of PHF21A has previously been implicated in the causation of intellectual disability (but not aniridia). Plausibly causative mutations were identified in 15 out of 42 individuals (12/32 aniridia; 3/11 Gillespie syndrome). Fourteen of these mutations presented in the known aniridia genes; PAX6, FOXC1 and PITX2. The large number of individuals in the cohort with no mutation identified suggests greater locus heterogeneity may exist in both isolated and syndromic aniridia than was previously appreciated.


Subject(s)
Aniridia/genetics , Cerebellar Ataxia/genetics , Intellectual Disability/genetics , PAX6 Transcription Factor/genetics , Chromosomes, Human, Pair 11/genetics , Chromosomes, Human, X/genetics , Comparative Genomic Hybridization/methods , Female , Forkhead Transcription Factors/genetics , GTPase-Activating Proteins/genetics , Genetic Testing/methods , Histone Deacetylases/genetics , Homeodomain Proteins/genetics , Humans , Male , Mutation/genetics , Transcription Factors/genetics , Homeobox Protein PITX2
19.
Eur J Hum Genet ; 13(5): 607-16, 2005 May.
Article in English | MEDLINE | ID: mdl-15770229

ABSTRACT

The phenotype of Bardet-Biedl syndrome (BBS) is defined by the association of retinitis pigmentosa, obesity, polydactyly, hypogenitalism, renal disease and cognitive impairement. The significant genetic heterogeneity of this condition is supported by the identification, to date, of eight genes (BBS1-8) implied with cilia assembly or function. Triallelic inheritance has recently been suggested on the basis of the identification of three mutated alleles in two different genes for the same patient. In a cohort of 27 families, six BBS genes (namely BBS1, BBS2, BBS4, BBS6, BBS7 and BBS8) have been studied. Mutations were identified in 14 families. Two mutations within the same gene have been identified in seven families. BBS1 is most frequently implied with the common M390R substitution at the homozygous state (n=2), or associated with another mutation at BBS1 (n=3). Compound heterozygous mutations have been found in BBS2 (one family) and BBS6 (one family). In seven other families, only one heterozygous mutation has been identified (once in BBS1, twice for BBS2 and three times in BBS6). Although our study did not reveal any families with bona fide mutations in two BBS genes, consistent with a triallelic hypothesis, we have found an excess of heterozygous single mutations. This study underlines the genetic heterogeneity of the BBS and the involvement of possibly unidentified genes.


Subject(s)
Alleles , Bardet-Biedl Syndrome/genetics , Mutation , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Cohort Studies , Cytoskeletal Proteins , Female , France , Genetic Carrier Screening , Genetic Heterogeneity , Genetic Testing/methods , Group II Chaperonins , Humans , Male , Microsatellite Repeats , Microtubule-Associated Proteins , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Sequence Data , Pedigree , Polymorphism, Genetic , Proteins/chemistry , Proteins/genetics
20.
Eur J Hum Genet ; 13(3): 302-8, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15657609

ABSTRACT

Achromatopsia is a congenital, autosomal recessively inherited disorder characterized by a lack of color discrimination, low visual acuity (<0.2), photophobia, and nystagmus. Mutations in the genes for CNGA3, CNGB3, and GNAT2 have been associated with this disorder. Here, we analyzed the spectrum and prevalence of CNGB3 gene mutations in a cohort of 341 independent patients with achromatopsia. In 163 patients, CNGB3 mutations could be identified. A total of 105 achromats carried apparent homozygous mutations, 44 were compound (double) heterozygotes, and 14 patients had only a single mutant allele. The derived CNGB3 mutation spectrum comprises 28 different mutations including 12 nonsense mutations, eight insertions and/or deletions, five putative splice site mutations, and three missense mutations. Thus, the majority of mutations in the CNGB3 gene result in significantly altered and/or truncated polypeptides. Several mutations were found recurrently, in particular a 1 bp deletion, c.1148delC, which accounts for over 70% of all CNGB3 mutant alleles. In conclusion, mutations in the CNGB3 gene are responsible for approximately 50% of all patients with achromatopsia. This indicates that the CNGB3/ACHM3 locus on chromosome 8q21 is the major locus for achromatopsia in patients of European origin or descent.


Subject(s)
Color Vision Defects/genetics , Genes, Recessive , Ion Channels/genetics , Mutation , Alleles , Animals , Color Vision Defects/physiopathology , Color Vision Defects/veterinary , Cyclic Nucleotide-Gated Cation Channels , Dog Diseases/genetics , Dogs , Humans , Phenotype , Retinal Cone Photoreceptor Cells
SELECTION OF CITATIONS
SEARCH DETAIL