Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nat Commun ; 15(1): 1090, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316788

ABSTRACT

Macrophages are fundamental cells of the innate immune system that support normal haematopoiesis and play roles in both anti-cancer immunity and tumour progression. Here we use a chimeric mouse model of chronic myeloid leukaemia (CML) and human bone marrow (BM) derived macrophages to study the impact of the dysregulated BM microenvironment on bystander macrophages. Utilising single-cell RNA sequencing (scRNA-seq) of Philadelphia chromosome (Ph) negative macrophages we reveal unique subpopulations of immature macrophages residing in the CML BM microenvironment. CML exposed macrophages separate from their normal counterparts by reduced expression of the surface marker CD36, which significantly reduces clearance of apoptotic cells. We uncover aberrant production of CML-secreted factors, including the immune modulatory protein lactotransferrin (LTF), that suppresses efferocytosis, phagocytosis, and CD36 surface expression in BM macrophages, indicating that the elevated secretion of LTF is, at least partially responsible for the supressed clearance function of Ph- macrophages.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Animals , Mice , Humans , Bone Marrow/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myeloid/pathology , Philadelphia Chromosome , Macrophages/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Tumor Microenvironment/genetics
2.
Proc Natl Acad Sci U S A ; 107(5): 2343-8, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20133878

ABSTRACT

Remorin proteins have been hypothesized to play important roles during cellular signal transduction processes. Induction of some members of this multigene family has been reported during biotic interactions. However, no roles during host-bacteria interactions have been assigned to remorin proteins until now. We used root nodule symbiosis between Medicago truncatula and Sinorhizobium meliloti to study the roles of a remorin that is specifically induced during nodulation. Here we show that this oligomeric remorin protein attaches to the host plasma membrane surrounding the bacteria and controls infection and release of rhizobia into the host cytoplasm. It interacts with the core set of symbiotic receptors that are essential for perception of bacterial signaling molecules, and thus might represent a plant-specific scaffolding protein.


Subject(s)
Carrier Proteins/physiology , Medicago truncatula/microbiology , Medicago truncatula/physiology , Phosphoproteins/physiology , Plant Proteins/physiology , Sinorhizobium meliloti/physiology , Symbiosis/physiology , Base Sequence , Carrier Proteins/genetics , DNA Primers/genetics , Medicago truncatula/genetics , Molecular Sequence Data , Mutation , Phosphoproteins/genetics , Plant Proteins/genetics , Plants, Genetically Modified , RNA Interference , Rhizobium/genetics , Signal Transduction , Transformation, Genetic
3.
Cancers (Basel) ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36358672

ABSTRACT

Tyrosine kinase inhibitors (TKI) have revolutionised the treatment of CML. However, TKI do not eliminate the leukaemia stem cells (LSC), which can re-initiate the disease. Thus, finding new therapeutic targets in CML LSC is key to finding a curative treatment. Using microarray datasets, we defined a list of 227 genes that were differentially expressed in CML LSC compared to the healthy controls but were not affected by TKI in vitro. Two of them, CD33 and PPIF, are targeted by gemtuzumab-ozogamicin and cyclosporin A, respectively. We treated CML and the control CD34+ cells with either drug with or without imatinib to investigate the therapeutic potential of the TKI-independent gene expression programme. Cyclosporine A, in combination with imatinib, reduced the number of CML CFC compared with non-CML controls, but only at supra-therapeutic concentrations. Gemtuzumab-ozogamicin showed an EC50 of 146 ng/mL, below the plasma peak concentration of 630 ng/mL observed in the AML patients and below the EC50 of 3247 ng/mL observed in the non-CML cells. Interestingly, gemtuzumab-ozogamicin seems to promote cell cycle progression in CML CD34+ cells and demonstrated activation of the RUNX1 pathway in an RNAseq experiment. This suggests that targeting the TKI-independent genes in CML LSC could be exploited for the development of new therapies in CML.

4.
Mol Oncol ; 15(9): 2253-2272, 2021 09.
Article in English | MEDLINE | ID: mdl-33421304

ABSTRACT

Acute myeloid leukaemia (AML) is a clinically and molecularly heterogeneous disease characterised by uncontrolled proliferation, block in differentiation and acquired self-renewal of hematopoietic stem and myeloid progenitor cells. This results in the clonal expansion of myeloid blasts within the bone marrow and peripheral blood. The incidence of AML increases with age, and in childhood, AML accounts for 20% of all leukaemias. Whilst there are many clinical and biological similarities between paediatric and adult AML with continuum across the age range, many characteristics of AML are associated with age of disease onset. These include chromosomal aberrations, gene mutations and differentiation lineage. Following chemotherapy, AML cells that survive and result in disease relapse exist in an altered chemoresistant state. Molecular profiling currently represents a powerful avenue of experimentation to study AML cells from adults and children pre- and postchemotherapy as a means of identifying prognostic biomarkers and targetable molecular vulnerabilities that may be age-specific. This review highlights recent advances in our knowledge of the molecular profiles with a focus on transcriptomes and metabolomes, leukaemia stem cells and chemoresistant cells in adult and paediatric AML and focus on areas that hold promise for future therapies.


Subject(s)
Gene Expression Profiling , Leukemia, Myeloid, Acute/genetics , Adult , Biomarkers, Tumor/genetics , Child , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Humans , Transcription, Genetic
5.
Arch Microbiol ; 192(4): 259-65, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20151113

ABSTRACT

One important step in the life cycle of the pathogenic protozoan Giardia lamblia is the transformation of the proliferative form, the trophozoite, into the non-proliferative cyst. This process, known as encystation, can be triggered in vitro. Morphological analysis showed that during trophozoite-cyst transformation, major changes take place: modification of the protozoan shape, internalization of the flagella, fragmentation of the adhesive disk, and appearance of encystation vesicles (ESVs), which later on fuse with the plasma membrane forming the cell wall. Sites of attachment of these vesicles to the inner portion of the protozoan plasma membrane were observed 6 h after the beginning of the encystation process. These sites were only visible when we used high-resolution scanning electron microscopy to study Giardia surface. In order to analyze the involvement of protein kinases and phosphatases on the encystation process, inhibitors of these enzymes were added to the culture medium, and their effect on the differentiation process was determined using light, immunofluorescence, and electron microscopy. Significant inhibition was observed with LY294002, an inhibitor of PI3 kinase; genistein, an inhibitor of tyrosine kinase; and staurosporine, at concentrations, which inhibit protein kinase C. Okadaic acid, an inhibitor or protein phosphatase, and wortmannin, an inhibitor of PI3K, did not interfere with the encystation process. However, they induced the appearance of large and pleomorphic forms where several nuclei and disorganization of the peripheral vesicles were observed.


Subject(s)
Enzyme Inhibitors/pharmacology , Giardia lamblia/physiology , Protozoan Proteins/metabolism , Androstadienes/pharmacology , Chromones/pharmacology , Culture Media , Genistein/pharmacology , Giardia lamblia/drug effects , Giardia lamblia/enzymology , Giardia lamblia/ultrastructure , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Morpholines/pharmacology , Okadaic Acid/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , Protein-Tyrosine Kinases/metabolism , Staurosporine/pharmacology , Wortmannin
6.
Nat Commun ; 9(1): 5280, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30538250

ABSTRACT

Acute myeloid leukaemia (AML) affects children and adults of all ages. AML remains one of the major causes of death in children with cancer and for children with AML relapse is the most common cause of death. Here, by modelling AML in vivo we demonstrate that AML is discriminated by the age of the cell of origin. Young cells give rise to myeloid, lymphoid or mixed phenotype acute leukaemia, whereas adult cells give rise exclusively to AML, with a shorter latency. Unlike adult, young AML cells do not remodel the bone marrow stroma. Transcriptional analysis distinguishes young AML by the upregulation of immune pathways. Analysis of human paediatric AML samples recapitulates a paediatric immune cell interaction gene signature, highlighting two genes, RGS10 and FAM26F as prognostically significant. This work advances our understanding of paediatric AML biology, and provides murine models that offer the potential for developing paediatric specific therapeutic strategies.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Age Factors , Animals , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Pediatrics , Prognosis , RGS Proteins/genetics , RGS Proteins/metabolism
7.
Histochem Cell Biol ; 124(1): 87-95, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15995880

ABSTRACT

The association of high resolution field emission scanning electron microscopy (FESEM), with a more efficient system of secondary electron (SE) collection and in-lens specimen position, provided a great improvement in the specimen's topographical contrast and in the generation of high-resolution images. In addition, images obtained with the use of the high-resolution backscattered electrons (BSE) detector provided a powerful tool for immunocytochemical analysis of biological material. In this work, we show the contribution of the FESEM to the detailed description of cytoskeletal structures of the protozoan parasites Herpetomonas megaseliae, Trypanosoma brucei and Giardia lamblia. High-resolution images of detergent extracted H. megaseliae and T. brucei showed the profile of the cortical microtubules, also known as sub-pellicular microtubules (SPMT), and protein bridges cross-linking them. Also, it was possible to visualize fine details of the filaments that form the lattice-like structure of the paraflagellar rod (PFR) and its connection with the axoneme. In G. lamblia, it was possible to observe the intricate structure of the adhesive disk, funis (a microtubular array) and other cytoskeletal structures poorly described previously. Since most of the stable cytoskeletal structures of this protozoan rely on tubulin, we used the BSE images to accurately map immunolabeled tubulin in its cytoskeleton. Our results suggest that the observation of detergent extracted parasites using FESEM associated to backscattered analysis of immunolabeled specimens represents a new approach for the study of parasite cytoskeletal elements and their protein associations.


Subject(s)
Cytoskeleton/ultrastructure , Eukaryota/ultrastructure , Microscopy, Electron, Scanning/methods , Parasites/ultrastructure , Animals , Flagella , Giardia lamblia/cytology , Giardia lamblia/ultrastructure , Microscopy, Electron, Scanning/standards , Trypanosoma brucei brucei/cytology , Trypanosoma brucei brucei/ultrastructure , Trypanosomatina/cytology , Trypanosomatina/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL