Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nature ; 542(7642): 489-493, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28199309

ABSTRACT

Activation-induced cytidine deaminase (AID) is a B-cell-specific enzyme that targets immunoglobulin genes to initiate class switch recombination and somatic hypermutation. In addition, through off-target activity, AID has a much broader effect on genomic instability by initiating oncogenic chromosomal translocations and mutations involved in the development and progression of lymphoma. AID expression is tightly regulated in B cells and its overexpression leads to enhanced genomic instability and lymphoma formation. The phosphatidylinositol 3-kinase δ (PI3Kδ) pathway regulates AID by suppressing its expression in B cells. Drugs for leukaemia or lymphoma therapy such as idelalisib, duvelisib and ibrutinib block PI3Kδ activity directly or indirectly, potentially affecting AID expression and, consequently, genomic stability in B cells. Here we show that treatment of primary mouse B cells with idelalisib or duvelisib, and to a lesser extent ibrutinib, enhanced the expression of AID and increased somatic hypermutation and chromosomal translocation frequency to the Igh locus and to several AID off-target sites. Both of these effects were completely abrogated in AID-deficient B cells. PI3Kδ inhibitors or ibrutinib increased the formation of AID-dependent tumours in pristane-treated mice. Consistently, PI3Kδ inhibitors enhanced AID expression and translocation frequency to IGH and AID off-target sites in human chronic lymphocytic leukaemia and mantle cell lymphoma cell lines, and patients treated with idelalisib, but not ibrutinib, showed increased somatic hypermutation in AID off-targets. In summary, we show that PI3Kδ or Bruton's tyrosine kinase inhibitors increase genomic instability in normal and neoplastic B cells by an AID-dependent mechanism. This effect should be carefully considered, as such inhibitors can be administered to patients for years.


Subject(s)
B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Genomic Instability/drug effects , Phosphoinositide-3 Kinase Inhibitors , Adenine/analogs & derivatives , Agammaglobulinaemia Tyrosine Kinase , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , B-Lymphocytes/enzymology , B-Lymphocytes/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases/metabolism , Cytidine Deaminase/metabolism , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacology , Female , Humans , Immunoglobulin Class Switching/drug effects , Immunoglobulin Heavy Chains/genetics , Isoquinolines/adverse effects , Isoquinolines/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Mice , Phosphatidylinositol 3-Kinases/metabolism , Piperidines , Protein-Tyrosine Kinases/antagonists & inhibitors , Purines/adverse effects , Purines/pharmacology , Pyrazoles/adverse effects , Pyrazoles/pharmacology , Pyrimidines/adverse effects , Pyrimidines/pharmacology , Quinazolinones/adverse effects , Quinazolinones/pharmacology , Recombination, Genetic/drug effects , Somatic Hypermutation, Immunoglobulin/drug effects , Translocation, Genetic/drug effects
2.
Proc Natl Acad Sci U S A ; 115(40): 10076-10081, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30213852

ABSTRACT

Chromosomal rearrangements, including translocations, are early and essential events in the formation of many tumors. Previous studies that defined the genetic requirements for rearrangement formation have identified differences between murine and human cells, most notably in the role of classic and alternative nonhomologous end-joining (NHEJ) factors. We reported that poly(ADP)ribose polymerase 3 (PARP3) promotes chromosomal rearrangements induced by endonucleases in multiple human cell types. We show here that in contrast to classic (c-NHEJ) factors, Parp3 also promotes rearrangements in murine cells, including translocations in murine embryonic stem cells (mESCs), class-switch recombination in primary B cells, and inversions in tail fibroblasts that generate Eml4-Alk fusions. In mESCs, Parp3-deficient cells had shorter deletion lengths at translocation junctions. This was corroborated using next-generation sequencing of Eml4-Alk junctions in tail fibroblasts and is consistent with a role for Parp3 in promoting the processing of DNA double-strand breaks. We confirmed a previous report that Parp1 also promotes rearrangement formation. In contrast with Parp3, rearrangement junctions in the absence of Parp1 had longer deletion lengths, suggesting that Parp1 may suppress double-strand break processing. Together, these data indicate that Parp3 and Parp1 promote rearrangements with distinct phenotypes.


Subject(s)
B-Lymphocytes/metabolism , DNA End-Joining Repair/physiology , Immunoglobulin Class Switching/physiology , Mouse Embryonic Stem Cells/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Anaplastic Lymphoma Kinase , Animals , Fibroblasts/metabolism , Mice , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerases/genetics , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism
3.
Adv Exp Med Biol ; 1044: 39-48, 2018.
Article in English | MEDLINE | ID: mdl-29956290

ABSTRACT

The CRISPR/Cas9 system has emerged as a powerful tool to edit the genome. Among many applications, the system generates the exciting possibility of engineering small and large portions of chromosomes to induce a variety of structural alterations such as deletions, inversions, insertions and inter-chromosomal translocations. Furthermore, the availability of viral vectors that express Cas9 has been critical to deliver the CRISPR/Cas9 system directly in vivo to induce chromosomal rearrangements. This review provides an overview of the state-of-the-art CRISPR/Cas9 technology to model a variety of rearrangements in vivo in animal models.


Subject(s)
CRISPR-Cas Systems , Genetic Engineering/methods , Translocation, Genetic , Animals , Embryonic Stem Cells/metabolism , Mice
4.
Cancer Cell ; 41(12): 2100-2116.e10, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38039964

ABSTRACT

Selection of the best tumor antigen is critical for the therapeutic success of chimeric antigen receptor (CAR) T cells in hematologic malignancies and solid tumors. The anaplastic lymphoma kinase (ALK) receptor is expressed by most neuroblastomas while virtually absent in most normal tissues. ALK is an oncogenic driver in neuroblastoma and ALK inhibitors show promising clinical activity. Here, we describe the development of ALK.CAR-T cells that show potent efficacy in monotherapy against neuroblastoma with high ALK expression without toxicity. For neuroblastoma with low ALK expression, combination with ALK inhibitors specifically potentiates ALK.CAR-T cells but not GD2.CAR-T cells. Mechanistically, ALK inhibitors impair tumor growth and upregulate the expression of ALK, thereby facilitating the activity of ALK.CAR-T cells against neuroblastoma. Thus, while neither ALK inhibitors nor ALK.CAR-T cells will likely be sufficient as monotherapy in neuroblastoma with low ALK density, their combination specifically enhances therapeutic efficacy.


Subject(s)
Neuroblastoma , Humans , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Antigens, Neoplasm , T-Lymphocytes , Cell Line, Tumor
5.
Nat Cancer ; 4(7): 1016-1035, 2023 07.
Article in English | MEDLINE | ID: mdl-37430060

ABSTRACT

Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC) is treated with ALK tyrosine kinase inhibitors (TKIs), but the lack of activity of immune checkpoint inhibitors (ICIs) is poorly understood. Here, we identified immunogenic ALK peptides to show that ICIs induced rejection of ALK+ tumors in the flank but not in the lung. A single-peptide vaccination restored priming of ALK-specific CD8+ T cells, eradicated lung tumors in combination with ALK TKIs and prevented metastatic dissemination of tumors to the brain. The poor response of ALK+ NSCLC to ICIs was due to ineffective CD8+ T cell priming against ALK antigens and is circumvented through specific vaccination. Finally, we identified human ALK peptides displayed by HLA-A*02:01 and HLA-B*07:02 molecules. These peptides were immunogenic in HLA-transgenic mice and were recognized by CD8+ T cells from individuals with NSCLC, paving the way for the development of a clinical vaccine to treat ALK+ NSCLC.


Subject(s)
Cancer Vaccines , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mice , Animals , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Anaplastic Lymphoma Kinase/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Cancer Vaccines/therapeutic use , Receptor Protein-Tyrosine Kinases/therapeutic use , CD8-Positive T-Lymphocytes/pathology , Vaccines, Subunit/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/therapeutic use , Mice, Transgenic , Vaccination
6.
Nat Commun ; 13(1): 5614, 2022 09 24.
Article in English | MEDLINE | ID: mdl-36153311

ABSTRACT

The clinical significance of gene fusions detected by DNA-based next generation sequencing remains unclear as resistance mechanisms to EGFR tyrosine kinase inhibitors in EGFR mutant non-small cell lung cancer. By studying EGFR inhibitor-resistant patients treated with a combination of an EGFR inhibitor and a drug targeting the putative resistance-causing fusion oncogene, we identify patients who benefit and those who do not from this treatment approach. Through evaluation including RNA-seq of potential drug resistance-imparting fusion oncogenes in 504 patients with EGFR mutant lung cancer, we identify only a minority of them as functional, potentially capable of imparting EGFR inhibitor resistance. We further functionally validate fusion oncogenes in vitro using CRISPR-based editing of EGFR mutant cell lines and use these models to identify known and unknown drug resistance mechanisms to combination therapies. Collectively, our results partially reveal the complex nature of fusion oncogenes as potential drug resistance mechanisms and highlight approaches that can be undertaken to determine their functional significance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , ErbB Receptors , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/genetics , ErbB Receptors/antagonists & inhibitors , Genomics , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
7.
Cancers (Basel) ; 12(10)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066037

ABSTRACT

Anaplastic lymphoma kinase positive anaplastic large cell lymphomas (ALK+ ALCL) are an aggressive pediatric disease. The therapeutic options comprise chemotherapy, which is efficient in approximately 70% of patients, and targeted therapies, such as crizotinib (an ALK tyrosine kinase inhibitor (TKI)), used in refractory/relapsed cases. Research efforts have also converged toward the development of combined therapies to improve treatment. In this context, we studied whether autophagy could be modulated to improve crizotinib therapy. Autophagy is a vesicular recycling pathway, known to be associated with either cell survival or cell death depending on the cancer and therapy. We previously demonstrated that crizotinib induced cytoprotective autophagy in ALK+ lymphoma cells and that its further intensification was associated with cell death. In line with these results, we show here that combined ALK and Rapidly Accelerated Fibrosarcoma 1 (RAF1) inhibition, using pharmacological (vemurafenib) or molecular (small interfering RNA targeting RAF1 (siRAF1) or microRNA-7-5p (miR-7-5p) mimics) strategies, also triggered autophagy and potentiated the toxicity of TKI. Mechanistically, we found that this combined therapy resulted in the decrease of the inhibitory phosphorylation on Unc-51-like kinase-1 (ULK1) (a key protein in autophagy initiation), which may account for the enforced autophagy and cytokilling effect. Altogether, our results support the development of ALK and RAF1 combined inhibition as a new therapeutic approach in ALK+ ALCL.

8.
Sci Transl Med ; 10(471)2018 12 12.
Article in English | MEDLINE | ID: mdl-30541790

ABSTRACT

Physiologically relevant ALK (anaplastic lymphoma kinase) expression was not detected in human and mouse monocytes and macrophages, suggesting that the effects of bioactive compounds on stimulator of interferon genes (STING) activation may not depend on ALK.


Subject(s)
Receptor Protein-Tyrosine Kinases , Sepsis , Anaplastic Lymphoma Kinase , Animals , Humans , Mice
9.
Oncotarget ; 8(54): 92265-92274, 2017 Nov 03.
Article in English | MEDLINE | ID: mdl-29190913

ABSTRACT

The anaplastic lymphoma kinase (ALK) is recognized by the immune system as a tumor antigen, and preclinical evidence suggests that ALK-rearranged NSCLCs can also be successfully targeted immunologically using vaccine-based approaches. In contrast to ALK-rearranged lymphomas, the frequency and clinical significance of spontaneous ALK immune responses in patients with ALK-rearranged NSCLCs are largely unknown. We developed an enzyme-linked immunosorbent assay (ELISA) to measure anti-ALK antibody levels and mapped specific peptide epitope sequences within the ALK cytoplasmic domain in patients with non-small cell lung cancer. The ELISA method showed good correlation with ALK antibody titers measured with a standard immunocytochemical approach. Strong anti-ALK antibody responses were detected in 9 of 53 (17.0%) ALK-positive NSCLC patients and in 0 of 38 (0%) ALK-negative NSCLC patients (P<0.01), and the mean antibody levels were significantly higher in ALK-positive than in ALK-negative NSCLC patients (P=0.02). Across individual patients, autoantibodies recognized different epitopes in the ALK cytoplasmic domain, most of which clustered outside the tyrosine kinase domain. Whether the presence of high ALK autoantibody levels confers a more favorable prognosis in this patient population warrants further investigation.

10.
Nat Med ; 22(3): 270-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26855149

ABSTRACT

Patients with advanced Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant lung adenocarcinoma are currently treated with standard chemotherapy because of a lack of efficacious targeted therapies. We reasoned that the identification of mediators of Kras signaling in early mouse lung hyperplasias might bypass the difficulties that are imposed by intratumor heterogeneity in advanced tumors, and that it might unveil relevant therapeutic targets. Transcriptional profiling of Kras(G12V)-driven mouse hyperplasias revealed intertumor diversity with a subset that exhibited an aggressive transcriptional profile analogous to that of advanced human adenocarcinomas. The top-scoring gene in this profile encodes the tyrosine kinase receptor DDR1. The genetic and pharmacological inhibition of DDR1 blocked tumor initiation and tumor progression, respectively. The concomitant inhibition of both DDR1 and Notch signaling induced the regression of KRAS;TP53-mutant patient-derived lung xenografts (PDX) with a therapeutic efficacy that was at least comparable to that of standard chemotherapy. Our data indicate that the combined inhibition of DDR1 and Notch signaling could be an effective targeted therapy for patients with KRAS-mutant lung adenocarcinoma.


Subject(s)
Adenocarcinoma/genetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Lung Neoplasms/genetics , Membrane Proteins/antagonists & inhibitors , Neoplasms, Experimental/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Adenocarcinoma of Lung , Aged , Animals , Antibodies, Monoclonal , Antibodies, Monoclonal, Humanized/pharmacology , Cell Line, Tumor , Cisplatin/pharmacology , Dasatinib/pharmacology , Discoidin Domain Receptor 1 , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Mice , Middle Aged , Mutation , Neoplasm Transplantation , Paclitaxel/pharmacology , Receptors, Notch , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects
11.
Cell Rep ; 9(4): 1219-27, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25456124

ABSTRACT

Generation of genetically engineered mouse models (GEMMs) for chromosomal translocations in the endogenous loci by a knockin strategy is lengthy and costly. The CRISPR/Cas9 system provides an innovative and flexible approach for genome engineering of genomic loci in vitro and in vivo. Here, we report the use of the CRISPR/Cas9 system for engineering a specific chromosomal translocation in adult mice in vivo. We designed CRISPR/Cas9 lentiviral vectors to induce cleavage of the murine endogenous Eml4 and Alk loci in order to generate the Eml4-Alk gene rearrangement recurrently found in non-small-cell lung cancers (NSCLCs). Intratracheal or intrapulmonary inoculation of lentiviruses induced Eml4-Alk gene rearrangement in lung cells in vivo. Genomic and mRNA sequencing confirmed the genome editing and the production of the Eml4-Alk fusion transcript. All mice developed Eml4-Alk-rearranged lung tumors 2 months after the inoculation, demonstrating that the CRISPR/Cas9 system is a feasible and simple method for the generation of chromosomal rearrangements in vivo.


Subject(s)
CRISPR-Associated Proteins/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Gene Rearrangement , Genetic Engineering/methods , Translocation, Genetic/genetics , Animals , Base Sequence , Carcinogenesis/genetics , Carcinogenesis/pathology , HEK293 Cells , Humans , Lung Neoplasms/genetics , Mice , Molecular Sequence Data , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Cancer Cell ; 19(5): 652-63, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21514245

ABSTRACT

We have investigated the role of individual members of the Raf/Mek/Erk cascade in the onset of K-Ras oncogene-driven non-small cell lung carcinoma (NSCLC). Ablation of Erk1 or Erk2 in K-Ras oncogene-expressing lung cells had no significant effect due to compensatory activities. Yet, elimination of both Erk kinases completely blocked tumor development. Similar results were obtained with Mek kinases. Ablation of B-Raf had no significant effect on tumor development. However, c-Raf expression was absolutely essential for the onset of NSCLC. Interestingly, concomitant elimination of c-Raf and B-Raf in adult mice had no deleterious consequences for normal homeostasis. These results indicate that c-Raf plays a unique role in mediating K-Ras signaling and makes it a suitable target for therapeutic intervention.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Genes, ras , Lung Neoplasms/enzymology , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/metabolism , Animals , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation , Cellular Senescence , Fibroblasts/enzymology , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MAP Kinase Kinase 1/deficiency , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 2/deficiency , MAP Kinase Kinase 2/genetics , Mice , Mice, Knockout , Mitogen-Activated Protein Kinase 1/deficiency , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/deficiency , Mitogen-Activated Protein Kinase 3/genetics , Proto-Oncogene Proteins B-raf/deficiency , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-raf/deficiency , Proto-Oncogene Proteins c-raf/genetics , RNA Interference , Signal Transduction , Time Factors , Transfection , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL