Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
PLoS Pathog ; 6: e1000981, 2010 Jul 01.
Article in English | MEDLINE | ID: mdl-20617179

ABSTRACT

Dendritic cells (DCs) contribute to human immunodeficiency virus type 1 (HIV-1) transmission and dissemination by capturing and transporting infectious virus from the mucosa to draining lymph nodes, and transferring these virus particles to CD4+ T cells with high efficiency. Toll-like receptor (TLR)-induced maturation of DCs enhances their ability to mediate trans-infection of T cells and their ability to migrate from the site of infection. Because TLR-induced maturation can be inhibited by nuclear receptor (NR) signaling, we hypothesized that ligand-activated NRs could repress DC-mediated HIV-1 transmission and dissemination. Here, we show that ligands for peroxisome proliferator-activated receptor gamma (PPARgamma) and liver X receptor (LXR) prevented proinflammatory cytokine production by DCs and inhibited DC migration in response to the chemokine CCL21 by preventing the TLR-induced upregulation of CCR7. Importantly, PPARgamma and LXR signaling inhibited both immature and mature DC-mediated trans-infection by preventing the capture of HIV-1 by DCs independent of the viral envelope glycoprotein. PPARgamma and LXR signaling induced cholesterol efflux from DCs and led to a decrease in DC-associated cholesterol, which has previously been shown to be required for DC capture of HIV-1. Finally, both cholesterol repletion and the targeted knockdown of the cholesterol transport protein ATP-binding cassette A1 (ABCA1) restored the ability of NR ligand treated cells to capture HIV-1 and transfer it to T cells. Our results suggest that PPARgamma and LXR signaling up-regulate ABCA1-mediated cholesterol efflux from DCs and that this accounts for the decreased ability of DCs to capture HIV-1. The ability of NR ligands to repress DC mediated trans-infection, inflammation, and DC migration underscores their potential therapeutic value in inhibiting HIV-1 mucosal transmission.


Subject(s)
Dendritic Cells/virology , HIV Infections/transmission , Orphan Nuclear Receptors/physiology , PPAR gamma/physiology , ATP Binding Cassette Transporter 1 , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/physiology , Cell Movement/drug effects , Chemokine CCL21/physiology , Cholesterol/metabolism , Dendritic Cells/physiology , HIV-1/physiology , Humans , Liver X Receptors , Receptors, Cytoplasmic and Nuclear/physiology , Signal Transduction , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL