Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Cell ; 177(4): 942-956.e14, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30955889

ABSTRACT

Plants are sessile and have to cope with environmentally induced damage through modification of growth and defense pathways. How tissue regeneration is triggered in such responses and whether this involves stem cell activation is an open question. The stress hormone jasmonate (JA) plays well-established roles in wounding and defense responses. JA also affects growth, which is hitherto interpreted as a trade-off between growth and defense. Here, we describe a molecular network triggered by wound-induced JA that promotes stem cell activation and regeneration. JA regulates organizer cell activity in the root stem cell niche through the RBR-SCR network and stress response protein ERF115. Moreover, JA-induced ERF109 transcription stimulates CYCD6;1 expression, functions upstream of ERF115, and promotes regeneration. Soil penetration and response to nematode herbivory induce and require this JA-mediated regeneration response. Therefore, the JA tissue damage response pathway induces stem cell activation and regeneration and activates growth after environmental stress.


Subject(s)
Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Roots/metabolism , Stem Cells/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cyclins/metabolism , Gene Expression Regulation, Plant/genetics , Herbivory , Indoleacetic Acids/metabolism , Regeneration/physiology , Signal Transduction/physiology , Stress, Physiological , Transcription Factors/metabolism
2.
Cell ; 150(5): 1002-15, 2012 Aug 31.
Article in English | MEDLINE | ID: mdl-22921914

ABSTRACT

In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Arabidopsis/metabolism , Plant Roots/cytology , Amino Acid Sequence , Asymmetric Cell Division , Cyclin D/metabolism , Cyclin-Dependent Kinases/metabolism , Indoleacetic Acids/metabolism , Mesophyll Cells/metabolism , Molecular Sequence Data , Phosphorylation , Plant Roots/metabolism , Sequence Alignment
3.
Proc Natl Acad Sci U S A ; 120(42): e2306263120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37819983

ABSTRACT

Strigolactones (SLs) regulate many developmental processes, including shoot-branching/tillering, and mediate rhizospheric interactions. SLs originate from carlactone (CL) and are structurally diverse, divided into a canonical and a noncanonical subfamily. Rice contains two canonical SLs, 4-deoxyorobanchol (4DO) and orobanchol (Oro), which are common in different plant species. The cytochrome P450 OsMAX1-900 forms 4DO from CL through repeated oxygenation and ring closure, while the homologous enzyme OsMAX1-1400 hydroxylates 4DO into Oro. To better understand the biological function of 4DO and Oro, we generated CRISPR/Cas9 mutants disrupted in OsMAX1-1400 or in both OsMAX1-900 and OsMAX1-1400. The loss of OsMAX1-1400 activity led to a complete lack of Oro and an accumulation of its precursor 4DO. Moreover, Os1400 mutants showed shorter plant height, panicle and panicle base length, but no tillering phenotype. Hormone quantification and transcriptome analysis of Os1400 mutants revealed elevated auxin levels and changes in the expression of auxin-related, as well as of SL biosynthetic genes. Interestingly, the Os900/1400 double mutant lacking both Oro and 4DO did not show the observed Os1400 architectural phenotypes, indicating their being a result of 4DO accumulation. Treatment of wild-type plants with 4DO confirmed this assumption. A comparison of the Striga seed germinating activity and the mycorrhization of Os900, Os900/1400, and Os1400 loss-of-function mutants demonstrated that the germination activity positively correlates with 4DO content while disrupting OsMAX1-1400 has a negative impact on mycorrhizal symbiosis. Taken together, our paper deciphers the biological function of canonical SLs in rice and reveals their particular contributions to establishing architecture and rhizospheric communications.


Subject(s)
Oryza , Plant Growth Regulators , Plant Growth Regulators/metabolism , Oryza/genetics , Oryza/metabolism , Plants/metabolism , Lactones/metabolism , Cytochrome P-450 Enzyme System/metabolism , Indoleacetic Acids/metabolism
4.
Genes Dev ; 32(15-16): 1085-1100, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30018102

ABSTRACT

Continuous formation of somatic tissues in plants requires functional stem cell niches where undifferentiated cells are maintained. In Arabidopsis thaliana, PLETHORA (PLT) and SCARECROW (SCR) genes are outputs of apical-basal and radial patterning systems, and both are required for root stem cell specification and maintenance. The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in and required for functions of a small group of root stem cell organizer cells, also called the quiescent center (QC). PLT and SCR are required for QC function, and their expression overlaps in the QC; however, how they specify the organizer has remained unknown. We show that PLT and SCR genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically. PLT-TCP-SCR complexes converge on PLT-binding sites in the WOX5 promoter to induce expression.


Subject(s)
Arabidopsis Proteins/metabolism , Plant Roots/genetics , Stem Cell Niche , Transcription Factors/metabolism , Arabidopsis/cytology , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Gene Expression , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mutation , Plant Roots/cytology , Plant Roots/embryology , Plant Roots/growth & development , Protein Interaction Domains and Motifs , Transcription Factors/chemistry , Transcription Factors/genetics
5.
EMBO Rep ; 24(2): e56687, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36579758

ABSTRACT

Understanding the intricate relationship between plants, desert soils, and desert-specific microbiomes would increase the success chances for reforestation projects to reclaim lands lost to desertification.


Subject(s)
Conservation of Natural Resources , Social Factors , Plants
6.
Nature ; 626(7999): 484-485, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38297053

Subject(s)
Plant Cells , Plants
7.
Nucleic Acids Res ; 51(21): 11876-11892, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37823590

ABSTRACT

In plants, the detection of microbe-associated molecular patterns (MAMPs) induces primary innate immunity by the activation of mitogen-activated protein kinases (MAPKs). We show here that the MAMP-activated MAPK MPK6 not only modulates defense through transcriptional regulation but also via the ribosomal protein translation machinery. To understand the effects of MPK6 on ribosomes and their constituent ribosomal proteins (RPs), polysomes, monosomes and the phosphorylation status of the RPs, MAMP-treated WT and mpk6 mutant plants were analysed. MAMP-activation induced rapid changes in RP composition of monosomes, polysomes and in the 60S ribosomal subunit in an MPK6-specific manner. Phosphoproteome analysis showed that MAMP-activation of MPK6 regulates the phosphorylation status of the P-stalk ribosomal proteins by phosphorylation of RPP0 and the concomitant dephosphorylation of RPP1 and RPP2. These events coincide with a significant decrease in the abundance of ribosome-bound RPP0s, RPP1s and RPP3s in polysomes. The P-stalk is essential in regulating protein translation by recruiting elongation factors. Accordingly, we found that RPP0C mutant plants are compromised in basal resistance to Pseudomonas syringae infection. These data suggest that MAMP-induced defense also involves MPK6-induced regulation of P-stalk proteins, highlighting a new role of ribosomal regulation in plant innate immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Ribosomal Proteins , Arabidopsis/immunology , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Phosphorylation , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Signal Transduction
8.
Plant J ; 113(5): 986-1003, 2023 03.
Article in English | MEDLINE | ID: mdl-36602437

ABSTRACT

The enzyme DWARF27 (D27) catalyzes the reversible isomerization of all-trans- into 9-cis-ß-carotene, initiating strigolactone (SL) biosynthesis. Genomes of higher plants encode two D27-homologs, D27-like1 and -like2, with unknown functions. Here, we investigated the enzymatic activity and biological function of the Arabidopsis D27-like1. In vitro enzymatic assays and expression in Synechocystis sp. PCC6803 revealed an unreported 13-cis/15-cis/9-cis- and a 9-cis/all-trans-ß-carotene isomerization. Although disruption of AtD27-like1 did not cause SL deficiency phenotypes, overexpression of AtD27-like1 in the d27 mutant restored the more-branching phenotype, indicating a contribution of AtD27-like1 to SL biosynthesis. Accordingly, generated d27 d27like1 double mutants showed a more pronounced branching phenotype compared to d27. The contribution of AtD27-like1 to SL biosynthesis is likely a result of its formation of 9-cis-ß-carotene that was present at higher levels in AtD27-like1 overexpressing lines. By contrast, AtD27-like1 expression correlated negatively with the content of 9-cis-violaxanthin, a precursor of ABA, in shoots. Consistently, ABA levels were higher in shoots and also in dry seeds of the d27like1 and d27 d27like1 mutants. Transgenic lines expressing GUS driven by the AtD27LIKE1 promoter and transcript analysis of hormone-treated Arabidopsis seedlings revealed that AtD27LIKE1 is expressed in different tissues and affects ABA and auxin. Taken together, our work reports a cis/cis-ß-carotene isomerase that affects the content of both cis-carotenoid-derived plant hormones, ABA and SLs.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , beta Carotene/metabolism , cis-trans-Isomerases/genetics , cis-trans-Isomerases/metabolism , Gene Expression Regulation, Plant , Isomerases/genetics , Isomerases/metabolism
9.
Plant Physiol ; 191(1): 382-399, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36222582

ABSTRACT

Carotenoid cleavage, catalyzed by CAROTENOID CLEAVAGE DIOXYGENASEs (CCDs), provides signaling molecules and precursors of plant hormones. Recently, we showed that zaxinone, a apocarotenoid metabolite formed by the CCD ZAXINONE SYNTHASE (ZAS), is a growth regulator required for normal rice (Oryza sativa) growth and development. The rice genome encodes three OsZAS homologs, called here OsZAS1b, OsZAS1c, and OsZAS2, with unknown functions. Here, we investigated the enzymatic activity, expression pattern, and subcellular localization of OsZAS2 and generated and characterized loss-of-function CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats and associated protein 9)-Oszas2 mutants. We show that OsZAS2 formed zaxinone in vitro. OsZAS2 was predominantly localized in plastids and mainly expressed under phosphate starvation. Moreover, OsZAS2 expression increased during mycorrhization, specifically in arbuscule-containing cells. Oszas2 mutants contained lower zaxinone content in roots and exhibited reduced root and shoot biomass, fewer tillers, and higher strigolactone (SL) levels. Exogenous zaxinone application repressed SL biosynthesis and partially rescued the growth retardation of the Oszas2 mutant. Consistent with the OsZAS2 expression pattern, Oszas2 mutants displayed a lower frequency of arbuscular mycorrhizal colonization. In conclusion, OsZAS2 is a zaxinone-forming enzyme that, similar to the previously reported OsZAS, determines rice growth, architecture, and SL content, and is required for optimal mycorrhization.


Subject(s)
Mycorrhizae , Oryza , Symbiosis , Plant Roots/genetics , Plant Roots/metabolism , Oryza/genetics , Oryza/metabolism , Mycorrhizae/physiology , Carotenoids/metabolism
10.
Plant Cell Environ ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924092

ABSTRACT

The rice Zaxinone Synthase (ZAS) gene encodes a carotenoid cleavage dioxygenase (CCD) that forms the apocarotenoid growth regulator zaxinone in vitro. Here, we generated and characterized constitutive ZAS-overexpressing rice lines, to better understand ZAS role in determining zaxinone content and regulating growth and architecture. ZAS overexpression enhanced endogenous zaxinone level, promoted root growth and increased the number of productive tillers, leading to about 30% higher grain yield per plant. Hormone analysis revealed a decrease in strigolactone (SL) content, which we confirmed by rescuing the high-tillering phenotype through application of a SL analogue. Metabolomics analysis revealed that ZAS overexpressing plants accumulate higher amounts of monosaccharide sugars, in line with transcriptome analysis. Moreover, transgenic plants showed higher carbon (C) assimilation rate and elevated root phosphate, nitrate and sulphate level, enhancing the tolerance towards low phosphate (Pi). Our study confirms ZAS as an important determinant of rice growth and architecture and shows that ZAS regulates hormone homoeostasis and a combination of physiological processes to promote growth and grain yield, which makes this gene an excellent candidate for sustainable crop improvement.

11.
J Exp Bot ; 75(3): 802-818, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37924151

ABSTRACT

Plants employ sophisticated molecular machinery to fine-tune their responses to growth, developmental, and stress cues. Gene expression influences plant cellular responses through regulatory processes such as transcription and splicing. Pre-mRNA is alternatively spliced to increase the genome coding potential and further regulate expression. Serine/arginine-rich (SR) proteins, a family of pre-mRNA splicing factors, recognize splicing cis-elements and regulate both constitutive and alternative splicing. Several studies have reported SR protein genes in the rice genome, subdivided into six subfamilies based on their domain structures. Here, we identified a new splicing factor in rice with an RNA recognition motif (RRM) and SR-dipeptides, which is related to the SR proteins, subfamily SC. OsSCR106 regulates pre-mRNA splicing under abiotic stress conditions. It localizes to the nuclear speckles, a major site for pre-mRNA splicing in the cell. The loss-of-function scr106 mutant is hypersensitive to salt, abscisic acid, and low-temperature stress, and harbors a developmental abnormality indicated by the shorter length of the shoot and root. The hypersensitivity to stress phenotype was rescued by complementation using OsSCR106 fused behind its endogenous promoter. Global gene expression and genome-wide splicing analysis in wild-type and scr106 seedlings revealed that OsSCR106 regulates its targets, presumably through regulating the alternative 3'-splice site. Under salt stress conditions, we identified multiple splice isoforms regulated by OsSCR106. Collectively, our results suggest that OsSCR106 is an important splicing factor that plays a crucial role in accurate pre-mRNA splicing and regulates abiotic stress responses in plants.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA Splicing , Alternative Splicing , Plants/metabolism , Stress, Physiological/genetics
12.
Physiol Plant ; 176(1): e14189, 2024.
Article in English | MEDLINE | ID: mdl-38342489

ABSTRACT

The date palm is a resilient, socioeconomically valuable desert fruit tree renowned for its heat, drought, and salinity tolerance. Date palm fruits are rich in nutrients and antioxidants, and their beneficial health properties can mitigate current and future food security challenges. However, it is challenging to improve date palm production through conventional breeding methods due to its slow growth. Date palm seeds do not produce true-to-type progeny, and commercial propagation relies on direct organogenesis from maternal tissue. Consequently, numerous economically important and valuable cultivars are lost due to tissue recalcitrance and challenges in inducing cell dedifferentiation and regeneration. Moreover, genetic engineering of date palms is currently impossible due to the lack of a stable genetic transformation protocol. This hampers the development of genetic resources in date palms. This study established a tissue culture pipeline and a genetic transformation protocol for various commercially important date palm cultivars. We used the non-invasive visual reporter RUBY and four morphogenic regulators to validate and improve date palm transformation potential. We found that the date palm BABY-BOOM (PdBBM) and the WOUND INDUCED DEDIFFERENTIATION (PdWIND1) enhanced transformation efficacy. We show that PdBBM can induce embryogenesis in hormone-free media and regenerate roots and shoots in recalcitrant varieties. On the other hand, PdWIND1 maintained embryogenic cells in their undifferentiated state. Our study provides a foundation for genetically improving date palms and a potential solution for preserving economically valuable varieties.


Subject(s)
Phoeniceae , Phoeniceae/genetics , Antioxidants
13.
Planta ; 257(6): 105, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37120771

ABSTRACT

MAIN CONCLUSION: Our study presents evidence for a novel mechanism for RBR function in transcriptional gene silencing by interacting with key players of the RdDM pathway in Arabidopsis and several plant clades. Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double-stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24-nt siRNAs) by DCL3. 24-nt siRNAs serve as guides to direct AGO4-siRNA complexes to chromatin-bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. The Arabidopsis Retinoblastoma protein homolog (RBR) is a master regulator of the cell cycle, stem cell maintenance, and development. We in silico predicted and explored experimentally the protein-protein interactions (PPIs) between RBR and members of the RdDM pathway. We found that the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2, and SUVR2 contain canonical and non-canonical RBR binding motifs and several of them are conserved since algae and bryophytes. We validated experimentally PPIs between Arabidopsis RBR and several of the RdDM pathway proteins. Moreover, seedlings from loss-of-function mutants in RdDM and RBR show similar phenotypes in the root apical meristem. We show that RdDM and SUVR2 targets are up-regulated in the 35S:AmiGO-RBR background.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Retinal Neoplasms , Retinoblastoma , Arabidopsis/genetics , Arabidopsis/metabolism , DNA Methylation/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , Retinoblastoma/genetics , RNA, Small Interfering/genetics , RNA, Double-Stranded/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Retinal Neoplasms/genetics , Gene Expression Regulation, Plant , Ribonuclease III/genetics
14.
New Phytol ; 239(3): 1112-1126, 2023 08.
Article in English | MEDLINE | ID: mdl-37243525

ABSTRACT

MAPKs are universal eukaryotic signaling factors whose functioning is assumed to depend on the recognition of a common docking motif (CD) by its activators, substrates, and inactivators. We studied the role of the CD domain of Arabidopsis MPK4 by performing interaction studies and determining the ligand-bound MPK4 crystal structure. We revealed that the CD domain of MPK4 is essential for interaction and activation by its upstream MAPKKs MKK1, MKK2, and MKK6. Cys181 in the CD site of MPK4 was shown to become sulfenylated in response to reactive oxygen species in vitro. To test the function of C181 in vivo, we generated wild-type (WT) MPK4-C181, nonsulfenylatable MPK4-C181S, and potentially sulfenylation mimicking MPK4-C181D lines in the mpk4 knockout background. We analyzed the phenotypes in growth, development, and stress responses, revealing that MPK4-C181S has WT activity and complements the mpk4 phenotype. By contrast, MPK4-C181D cannot be activated by upstream MAPKK and cannot complement the phenotypes of mpk4. Our findings show that the CD motif is essential and is required for activation by upstream MAPKK for MPK4 function. Furthermore, growth, development, or immunity functions require upstream activation of the MPK4 protein kinase.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mitogen-Activated Protein Kinases/metabolism , Arabidopsis Proteins/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , MAP Kinase Signaling System , Arabidopsis/metabolism , Plant Immunity/genetics
15.
Plant Physiol ; 189(4): 2281-2297, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35543497

ABSTRACT

The parasitic plant Striga (Striga hermonthica) invades the host root through the formation of a haustorium and has detrimental impacts on cereal crops. The haustorium results from the prehaustorium, which is derived directly from the differentiation of the Striga radicle. The molecular mechanisms leading to radicle differentiation shortly after germination remain unclear. In this study, we determined the developmental programs that regulate terminal prehaustorium formation in S. hermonthica at cellular resolution. We showed that shortly after germination, cells in the root meristem undergo multiplanar divisions. During growth, the meristematic activity declines and associates with reduced expression of the stem cell regulator PLETHORA1 and the cell cycle genes CYCLINB1 and HISTONE H4. We also observed a basal localization of the PIN-FORMED (PIN) proteins and a decrease in auxin levels in the meristem. Using the structural layout of the root meristem and the polarity of outer-membrane PIN proteins, we constructed a mathematical model of auxin transport that explains the auxin distribution patterns observed during S. hermonthica root growth. Our results reveal a fundamental molecular and cellular framework governing the switch of S. hermonthica roots to form the invasive prehaustoria.


Subject(s)
Striga , Crops, Agricultural , Germination/genetics , Indoleacetic Acids/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Striga/physiology
16.
Plant Physiol ; 190(1): 745-761, 2022 08 29.
Article in English | MEDLINE | ID: mdl-35674377

ABSTRACT

Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Alternative Splicing , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Botrytis/physiology , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Growth Regulators/metabolism , Plant Immunity/genetics , RNA-Binding Proteins/metabolism
17.
J Exp Bot ; 74(22): 7034-7044, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37486862

ABSTRACT

Parasitic plants invade their host through their invasive organ, the haustorium. This organ connects to the vasculature of the host roots and hijacks water and nutrients. Although parasitism has evolved independently in plants, haustoria formation follows a similar mechanism throughout different plant species, highlighting the developmental plasticity of plant tissues. Here, we compare three types of haustoria formed by the root and shoot in the plant parasites Striga and Cuscuta. We discuss mechanisms underlying the interactions with their hosts and how different approaches have contributed to major understanding of haustoria formation and host invasion. We also illustrate the role of auxin and cytokinin in controlling this process.


Subject(s)
Cuscuta , Striga , Plants , Cytokinins , Host-Parasite Interactions , Plant Roots
18.
Nature ; 548(7665): 97-102, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28746306

ABSTRACT

During multicellular development, specification of distinct cell fates is often regulated by the same transcription factors operating differently in distinct cis-regulatory modules, either through different protein complexes, conformational modification of protein complexes, or combinations of both. Direct visualization of different transcription factor complex states guiding specific gene expression programs has been challenging. Here we use in vivo FRET-FLIM (Förster resonance energy transfer measured by fluorescence lifetime microscopy) to reveal spatial partitioning of protein interactions in relation to specification of cell fate. We show that, in Arabidopsis roots, three fully functional fluorescently tagged cell fate regulators establish cell-type-specific interactions at endogenous expression levels and can form higher order complexes. We reveal that cell-type-specific in vivo FRET-FLIM distributions reflect conformational changes of these complexes to differentially regulate target genes and specify distinct cell fates.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Fluorescence Resonance Energy Transfer , Plant Roots/cytology , Plant Roots/metabolism , Protein Interaction Mapping/methods , Protein Interaction Maps , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Lineage , Endoderm/cytology , Endoderm/metabolism , HeLa Cells , Homeodomain Proteins/genetics , Humans , Microscopy, Fluorescence , Mutation , Organ Specificity , Protein Binding , Stem Cells/cytology , Stem Cells/metabolism , Transcription Factors/metabolism
19.
Plant J ; 107(1): 54-66, 2021 07.
Article in English | MEDLINE | ID: mdl-33837613

ABSTRACT

Carotenoid-derived regulatory metabolites and hormones are generally known to arise through the oxidative cleavage of a single double bond in the carotenoid backbone, which yields mono-carbonyl products called apocarotenoids. However, the extended conjugated double bond system of these pigments predestines them also to repeated cleavage forming dialdehyde products, diapocarotenoids, which have been less investigated due to their instability and low abundance. Recently, we reported on the short diapocarotenoid anchorene as an endogenous Arabidopsis metabolite and specific signaling molecule that promotes anchor root formation. In this work, we investigated the biological activity of a synthetic isomer of anchorene, iso-anchorene, which can be derived from repeated carotenoid cleavage. We show that iso-anchorene is a growth inhibitor that specifically inhibits primary root growth by reducing cell division rates in the root apical meristem. Using auxin efflux transporter marker lines, we also show that the effect of iso-anchorene on primary root growth involves the modulation of auxin homeostasis. Moreover, by using liquid chromatography-mass spectrometry analysis, we demonstrate that iso-anchorene is a natural Arabidopsis metabolite. Chemical inhibition of carotenoid biosynthesis led to a significant decrease in the iso-anchorene level, indicating that it originates from this metabolic pathway. Taken together, our results reveal a novel carotenoid-derived regulatory metabolite with a specific biological function that affects root growth, manifesting the biological importance of diapocarotenoids.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Carotenoids/metabolism , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/metabolism , Meristem/cytology , Meristem/drug effects , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plants, Genetically Modified
20.
Mol Plant Microbe Interact ; 35(2): 98-108, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34664986

ABSTRACT

Being sessile, plants are continuously challenged by changes in their surrounding environment and must survive and defend themselves against a multitude of pathogens. Plants have evolved a mode for pathogen recognition that activates signaling cascades such as reactive oxygen species, mitogen-activated protein kinase, and Ca2+ pathways, in coordination with hormone signaling, to execute the defense response at the local and systemic levels. Phytopathogens have evolved to manipulate cellular and hormonal signaling and exploit hosts' cell-to-cell connections in many ways at multiple levels. Overall, triumph over pathogens depends on how efficiently the pathogens are recognized and how rapidly the plant response is initiated through efficient intercellular communication via apoplastic and symplastic routes. Here, we review how intercellular communication in plants is mediated, manipulated, and maneuvered during plant-pathogen interaction.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.


Subject(s)
Cell Communication , Plants
SELECTION OF CITATIONS
SEARCH DETAIL