Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Article in English | MEDLINE | ID: mdl-34654747

ABSTRACT

Hybridization is among the evolutionary mechanisms most frequently hypothesized to drive the success of invasive species, in part because hybrids are common in invasive populations. One explanation for this pattern is that biological invasions coincide with a change in selection pressures that limit hybridization in the native range. To investigate this possibility, we studied the introduction of the brown anole (Anolis sagrei) in the southeastern United States. We find that native populations are highly genetically structured. In contrast, all invasive populations show evidence of hybridization among native-range lineages. Temporal sampling in the invasive range spanning 15 y showed that invasive genetic structure has stabilized, indicating that large-scale contemporary gene flow is limited among invasive populations and that hybrid ancestry is maintained. Additionally, our results are consistent with hybrid persistence in invasive populations resulting from changes in natural selection that occurred during invasion. Specifically, we identify a large-effect X chromosome locus associated with variation in limb length, a well-known adaptive trait in anoles, and show that this locus is often under selection in the native range, but rarely so in the invasive range. Moreover, we find that the effect size of alleles at this locus on limb length is much reduced in hybrids among divergent lineages, consistent with epistatic interactions. Thus, in the native range, epistasis manifested in hybrids can strengthen extrinsic postmating isolation. Together, our findings show how a change in natural selection can contribute to an increase in hybridization in invasive populations.


Subject(s)
Lizards/genetics , Selection, Genetic , Animals , Genetic Variation , Introduced Species , Nucleic Acid Hybridization
2.
Mol Ecol ; 32(11): 2930-2944, 2023 06.
Article in English | MEDLINE | ID: mdl-36811388

ABSTRACT

Invasive species can impact native populations through competition, predation, habitat alteration, and disease transmission, but also genetically through hybridization. Potential outcomes of hybridization span the continuum from extinction to hybrid speciation and can be further complicated by anthropogenic habitat disturbance. Hybridization between the native green anole lizard (Anolis carolinensis) and a morphologically similar invader (A. porcatus) in south Florida provides an ideal opportunity to study interspecific admixture across a heterogeneous landscape. We used reduced-representation sequencing to describe introgression in this hybrid system and to test for a relationship between urbanization and non-native ancestry. Our findings indicate that hybridization between green anole lineages was probably a limited, historic event, producing a hybrid population characterized by a diverse continuum of ancestry proportions. Genomic cline analyses revealed rapid introgression and disproportionate representation of non-native alleles at many loci and no evidence for reproductive isolation between parental species. Three loci were associated with urban habitat characteristics; urbanization and non-native ancestry were positively correlated, although this relationship did not remain significant when accounting for spatial nonindependence. Ultimately, our study demonstrates the persistence of non-native genetic material even in the absence of ongoing immigration, indicating that selection favouring non-native alleles can override the demographic limitation of low propagule pressure. We also note that not all outcomes of admixture between native and non-native species should be considered intrinsically negative. Hybridization with ecologically robust invaders can lead to adaptive introgression, which may facilitate the long-term survival of native populations otherwise unable to adapt to anthropogenically mediated global change.


Subject(s)
Lizards , Animals , Alleles , Lizards/genetics , Hybridization, Genetic , Genomics , Introduced Species
3.
Mol Ecol ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37489260

ABSTRACT

Research conducted during the past two decades has demonstrated that biological invasions are excellent models of rapid evolution. Even so, characteristics of invasive populations such as a short time for recombination to assemble optimal combinations of alleles may occasionally limit adaptation to new environments. Here, we investigated such genetic constraints to adaptation in the invasive brown anole (Anolis sagrei)-a tropical ectotherm that was introduced to the southeastern United States, a region with a much colder climate than in its native Caribbean range. We examined thermal physiology for 30 invasive populations and tested for a climatic cline in cold tolerance. Also, we used genomics to identify mechanisms that may limit adaptation. We found no support for a climatic cline, indicating that thermal tolerance did not shift adaptively. Concomitantly, population genomic results were consistent with the occurrence of recombination cold spots that comprise more than half of the genome and maintain long-range associations among alleles in invasive populations. These genomic regions overlap with both candidate thermal tolerance loci that we identified using a standard genome-wide association test. Moreover, we found that recombination cold spots do not have a large contribution to population differentiation in the invasive range, contrary to observations in the native range. We suggest that limited recombination is constraining the contribution of large swaths of the genome to adaptation in invasive brown anoles. Our study provides an example of evolutionary stasis during invasion and highlights the possibility that reduced recombination occasionally slows down adaptation in invasive populations.

4.
Mol Ecol ; 32(20): 5558-5574, 2023 10.
Article in English | MEDLINE | ID: mdl-37698063

ABSTRACT

Introductions of invasive species to new environments often result in rapid rates of trait evolution. While in some cases these evolutionary transitions are adaptive and driven by natural selection, they can also result from patterns of genetic and phenotypic variation associated with the invasion history. Here, we examined the brown anole (Anolis sagrei), a widespread invasive lizard for which genetic data have helped trace the sources of non-native populations. We focused on the dewlap, a complex signalling trait known to be subject to multiple selective pressures. We measured dewlap reflectance, pattern and size in 30 non-native populations across the southeastern United States. As well, we quantified environmental variables known to influence dewlap signal effectiveness, such as canopy openness. Further, we used genome-wide data to estimate genetic ancestry, perform association mapping and test for signatures of selection. We found that among-population variation in dewlap characteristics was best explained by genetic ancestry. This result was supported by genome-wide association mapping, which identified several ancestry-specific loci associated with dewlap traits. Despite the strong imprint of this aspect of the invasion history on dewlap variation, we also detected significant relationships between dewlap traits and local environmental conditions. However, we found limited evidence that dewlap-associated genetic variants have been subject to selection. Our study emphasizes the importance of genetic ancestry and admixture in shaping phenotypes during biological invasion, while leaving the role of selection unresolved, likely due to the polygenic genetic architecture of dewlaps and selection acting on many genes of small effect.


Subject(s)
Genome-Wide Association Study , Lizards , Animals , Selection, Genetic , Phenotype , Multifactorial Inheritance , Southeastern United States , Lizards/genetics , Biological Evolution
5.
Mol Ecol ; 32(24): 6729-6742, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37873879

ABSTRACT

Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.


Subject(s)
DNA , Museums , DNA/genetics , Biology
6.
Mol Ecol ; 31(13): 3598-3612, 2022 07.
Article in English | MEDLINE | ID: mdl-35560847

ABSTRACT

While adaptation is commonly thought to result from selection on DNA sequence-based variation, recent studies have highlighted an analogous epigenetic component as well. However, the relative roles of these mechanisms in facilitating population persistence under environmental heterogeneity remain unclear. To address the underlying genetic and epigenetic mechanisms and their relationship during environmental adaptation, we screened the genomes and epigenomes of nine global populations of a predominately sessile marine invasive tunicate, Botryllus schlosseri. We detected clear population differentiation at the genetic and epigenetic levels. Patterns of genetic and epigenetic structure were significantly influenced by local environmental variables. Among these variables, minimum annual sea surface temperature was identified as the top explanatory variable for both genetic and epigenetic variation. However, patterns of population structure driven by genetic and epigenetic variation were somewhat distinct, suggesting possible autonomy of epigenetic variation. We found both shared and specific genes and biological pathways among genetic and epigenetic loci associated with environmental factors, consistent with complementary and independent contributions of genetic and epigenetic variation to environmental adaptation in this system. Collectively, these mechanisms may facilitate population persistence under environmental change and sustain successful invasions across novel environments.


Subject(s)
Epigenomics , Genetic Variation , Adaptation, Physiological/genetics , Epigenesis, Genetic , Genetic Variation/genetics , Genetics, Population , Genome
7.
New Phytol ; 221(3): 1609-1618, 2019 02.
Article in English | MEDLINE | ID: mdl-30368824

ABSTRACT

Flowering plants serve as a powerful model for studying the evolution of nuclear genome size (GS) given the tremendous GS variation that exists both within and across angiosperm lineages. Helianthus sunflowers consist of c. 50 species native to North America that occupy diverse habitats and vary in ploidy level. In the current study, we generated a comprehensive GS database for 49 Helianthus species using flow cytometric approaches. We examined variability across the genus and present a comparative phylogenetic analysis of GS evolution in diploid Helianthus species. Results demonstrated that different clades of diploid Helianthus species showed evolutionary patterns of GS contraction, expansion and relative stasis, with annual diploid species evolving smaller GS with the highest rate of evolution. Phylogenetic comparative analyses of diploids revealed significant negative associations of GS with temperature seasonality and cell production rate, indicating that the evolution of larger GS in Helianthus diploids may be more permissible in habitats with longer growing seasons where selection for more rapid growth may be relaxed. The Helianthus GS database presented here and corresponding analyses of environmental and phenotypic correlates will facilitate ongoing and future research on the ultimate drivers of GS evolution in this well-studied North American plant genus.


Subject(s)
Cell Nucleus/genetics , Genetic Variation , Genome Size , Genome, Plant , Helianthus/genetics , Phylogeny , Diploidy , Environment , Least-Squares Analysis , Regression Analysis
9.
Am J Bot ; 103(12): 2170-2177, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27965242

ABSTRACT

PREMISE: Wild sunflowers harbor considerable genetic diversity and are a major resource for improvement of the cultivated sunflower, Helianthus annuus. The Helianthus genus is also well known for its propensity for gene flow between taxa. METHODS: We surveyed genomic diversity of 292 samples of wild Helianthus from 22 taxa that are cross-compatible with the cultivar using genotyping by sequencing. With these data, we derived a high-resolution phylogeny of the taxa, interrogated genome-wide levels of diversity, explored H. annuus population structure, and identified localized gene flow between H. annuus and its close relatives. KEY RESULTS: Our phylogenomic analyses confirmed a number of previously established interspecific relationships and indicated for the first time that a newly described annual sunflower, H. winteri, is nested within H. annuus. Principal component analyses showed that H. annuus has geographic population structure with most notable subpopulations occurring in California and Texas. While gene flow was identified between H. annuus and H. bolanderi in California and between H. annuus and H. argophyllus in Texas, this genetic exchange does not appear to drive observed patterns of H. annuus population structure. CONCLUSIONS: Wild H. annuus remains an excellent resource for cultivated sunflower breeding effort because of its diversity and the ease with which it can be crossed with cultivated H. annuus. Cases of interspecific gene flow such as those documented here also indicate wild H. annuus can act as a bridge to capture alleles from other wild taxa; continued breeding efforts with it may therefore reap the largest rewards.


Subject(s)
Gene Flow , Genetic Variation , Genome, Plant/genetics , Genomics , Helianthus/genetics , Alleles , Breeding , Demography , Genetic Structures , Genotype , Phylogeny
10.
Mol Ecol ; 24(9): 2226-40, 2015 May.
Article in English | MEDLINE | ID: mdl-25439241

ABSTRACT

Asteraceae, the largest family of flowering plants, has given rise to many notorious invasive species. Using publicly available transcriptome assemblies from 35 Asteraceae, including six major invasive species, we examined evidence for micro- and macro-evolutionary genomic changes associated with invasion. To detect episodes of positive selection repeated across multiple introductions, we conducted comparisons between native and introduced genotypes from six focal species and identified genes with elevated rates of amino acid change (dN/dS). We then looked for evidence of positive selection at a broader phylogenetic scale across all taxa. As invasive species may experience founder events during colonization and spread, we also looked for evidence of increased genetic load in introduced genotypes. We rarely found evidence for parallel changes in orthologous genes in the intraspecific comparisons, but in some cases we identified changes in members of the same gene family. Using among-species comparisons, we detected positive selection in 0.003-0.69% and 2.4-7.8% of the genes using site and stochastic branch-site models, respectively. These genes had diverse putative functions, including defence response, stress response and herbicide resistance, although there was no clear pattern in the GO terms. There was no indication that introduced genotypes have a higher proportion of deleterious alleles than native genotypes in the six focal species, suggesting multiple introductions and admixture mitigated the impact of drift. Our findings provide little evidence for common genomic responses in invasive taxa of the Asteraceae and hence suggest that multiple evolutionary pathways may lead to adaptation during introduction and spread in these species.


Subject(s)
Asteraceae/genetics , Biological Evolution , Introduced Species , Selection, Genetic , Alleles , Asteraceae/classification , Comparative Genomic Hybridization , Founder Effect , Genes, Plant , Genomics/methods , Genotype , Models, Genetic , Transcriptome
11.
Mol Ecol ; 24(9): 2277-97, 2015 May.
Article in English | MEDLINE | ID: mdl-25474505

ABSTRACT

Publication of The Genetics of Colonizing Species in 1965 launched the field of invasion genetics and highlighted the value of biological invasions as natural ecological and evolutionary experiments. Here, we review the past 50 years of invasion genetics to assess what we have learned and what we still don't know, focusing on the genetic changes associated with invasive lineages and the evolutionary processes driving these changes. We also suggest potential studies to address still-unanswered questions. We now know, for example, that rapid adaptation of invaders is common and generally not limited by genetic variation. On the other hand, and contrary to prevailing opinion 50 years ago, the balance of evidence indicates that population bottlenecks and genetic drift typically have negative effects on invasion success, despite their potential to increase additive genetic variation and the frequency of peak shifts. Numerous unknowns remain, such as the sources of genetic variation, the role of so-called expansion load and the relative importance of propagule pressure vs. genetic diversity for successful establishment. While many such unknowns can be resolved by genomic studies, other questions may require manipulative experiments in model organisms. Such studies complement classical reciprocal transplant and field-based selection experiments, which are needed to link trait variation with components of fitness and population growth rates. We conclude by discussing the potential for studies of invasion genetics to reveal the limits to evolution and to stimulate the development of practical strategies to either minimize or maximize evolutionary responses to environmental change.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Introduced Species , Epigenesis, Genetic , Genetic Drift , Genetic Variation , Genetics, Population , Phenotype
12.
New Phytol ; 201(3): 1021-1030, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24245977

ABSTRACT

The perennial sunflower Helianthus tuberosus, known as Jerusalem Artichoke or Sunchoke, was cultivated in eastern North America before European contact. As such, it represents one of the few taxa that can support an independent origin of domestication in this region. Its tubers were adopted as a source of food and forage when the species was transferred to the Old World in the early 1600s, and are still used today. Despite the cultural and economic importance of this tuber crop species, its origin is debated. Competing hypotheses implicate the occurrence of polyploidization with or without hybridization, and list the annual sunflower H. annuus and five distantly related perennial sunflower species as potential parents. Here, we test these scenarios by skimming the genomes of diverse populations of Jerusalem Artichoke and its putative progenitors. We identify relationships among Helianthus taxa using complete plastomes (151 551 bp), partial mitochondrial genomes (196 853 bp) and 35S (8196 bp) and 5S (514 bp) ribosomal DNA. Our results refute the possibility that Jerusalem Artichoke is of H. annuus ancestry. We provide the first genetic evidence that this species originated recursively from perennial sunflowers of central-eastern North America via hybridization between tetraploid Hairy Sunflower and diploid Sawtooth Sunflower.


Subject(s)
Biological Evolution , Crops, Agricultural/genetics , Genome, Plant/genetics , Helianthus/genetics , Plant Tubers/genetics , DNA, Ribosomal/genetics , Geography , Haplotypes/genetics , Likelihood Functions , Phylogeny , Polymorphism, Genetic
13.
Mol Ecol ; 23(20): 4899-911, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25223488

ABSTRACT

Is DNA variation maintained in organelle genomes selectively neutral? The answer to this question has important implications for many aspects of ecology and evolution. While traditionally the answer has been 'yes', recent studies in animals have shown that, on the contrary, mitochondrial DNA polymorphism is frequently adaptive. In plants, however, the neutrality assumption has not been strongly challenged. Here, we begin with a critical evaluation of arguments in favour of this long-held view. We then discuss the latest empirical evidence for the opposing prediction that sequence variation in plant cytoplasmic genomes is frequently adaptive. While outstanding research progress is being made towards understanding this fundamental topic, we highlight the need for studies that combine information ranging from field experiments to physiology to molecular evolutionary biology. Such an interdisciplinary approach provides a means for determining the frequency, drivers and evolutionary significance of adaptive organelle DNA variation.


Subject(s)
Genome, Chloroplast , Genome, Mitochondrial , Genome, Plant , Plants/genetics , Adaptation, Biological/genetics , Biological Evolution , Cytoplasm/genetics , DNA, Plant/genetics , Genetic Variation , Mutation Rate , Selection, Genetic
14.
FASEB J ; 27(4): 1304-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23288929

ABSTRACT

The data underlying scientific papers should be accessible to researchers both now and in the future, but how best can we ensure that these data are available? Here we examine the effectiveness of four approaches to data archiving: no stated archiving policy, recommending (but not requiring) archiving, and two versions of mandating data deposition at acceptance. We control for differences between data types by trying to obtain data from papers that use a single, widespread population genetic analysis, structure. At one extreme, we found that mandated data archiving policies that require the inclusion of a data availability statement in the manuscript improve the odds of finding the data online almost 1000-fold compared to having no policy. However, archiving rates at journals with less stringent policies were only very slightly higher than those with no policy at all. We also assessed the effectiveness of asking for data directly from authors and obtained over half of the requested datasets, albeit with ∼8 d delay and some disagreement with authors. Given the long-term benefits of data accessibility to the academic community, we believe that journal-based mandatory data archiving policies and mandatory data availability statements should be more widely adopted.


Subject(s)
Archives , Biomedical Research , Peer Review, Research , Data Collection/methods , Databases, Factual , Humans , Policy
15.
PLoS One ; 18(6): e0286620, 2023.
Article in English | MEDLINE | ID: mdl-37289794

ABSTRACT

The nuclear genomes of most animal species include NUMTs, segments of the mitogenome incorporated into their chromosomes. Although NUMT counts are known to vary greatly among species, there has been no comprehensive study of their frequency/attributes in the most diverse group of terrestrial organisms, insects. This study examines NUMTs derived from a 658 bp 5' segment of the cytochrome c oxidase I (COI) gene, the barcode region for the animal kingdom. This assessment is important because unrecognized NUMTs can elevate estimates of species richness obtained through DNA barcoding and derived approaches (eDNA, metabarcoding). This investigation detected nearly 10,000 COI NUMTs ≥ 100 bp in the genomes of 1,002 insect species (range = 0-443). Variation in nuclear genome size explained 56% of the mitogenome-wide variation in NUMT counts. Although insect orders with the largest genome sizes possessed the highest NUMT counts, there was considerable variation among their component lineages. Two thirds of COI NUMTs possessed an IPSC (indel and/or premature stop codon) allowing their recognition and exclusion from downstream analyses. The remainder can elevate species richness as they showed 10.1% mean divergence from their mitochondrial homologue. The extent of exposure to "ghost species" is strongly impacted by the target amplicon's length. NUMTs can raise apparent species richness by up to 22% when a 658 bp COI amplicon is examined versus a doubling of apparent richness when 150 bp amplicons are targeted. Given these impacts, metabarcoding and eDNA studies should target the longest possible amplicons while also avoiding use of 12S/16S rDNA as they triple NUMT exposure because IPSC screens cannot be employed.


Subject(s)
DNA, Mitochondrial , Genome, Insect , Animals , DNA, Mitochondrial/genetics , Mitochondria/genetics , Insecta/genetics , Risk Assessment , Cell Nucleus/genetics , Phylogeny , Sequence Analysis, DNA
16.
Evolution ; 77(1): 123-137, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36625679

ABSTRACT

As anthropogenic activities are increasing the frequency and severity of droughts, understanding whether and how fast populations can adapt to sudden changes in their hydric environment is critically important. Here, we capitalize on the introduction of the Cuban brown anole lizard (Anolis sagrei) in North America to assess the contemporary evolution of a widespread terrestrial vertebrate to an abrupt climatic niche shift. We characterized hydric balance in 30 populations along a large climatic gradient. We found that while evaporative and cutaneous water loss varied widely, there was no climatic cline, as would be expected under adaptation. Furthermore, the skin of lizards from more arid environments was covered with smaller scales, a condition thought to limit water conservation and thus be maladaptive. In contrast to environmental conditions, genome-averaged ancestry was a significant predictor of water loss. This was reinforced by our genome-wide association analyses, which indicated a significant ancestry-specific effect for water loss at one locus. Thus, our study indicates that the water balance of invasive brown anoles is dictated by an environment-independent introduction and hybridization history and highlights genetic interactions or genetic correlations as factors that might forestall adaptation. Alternative water conservation strategies, including behavioral mitigation, may influence the brown anole invasion success and require future examination.


Subject(s)
Lizards , Animals , Lizards/genetics , Genome-Wide Association Study , Acclimatization , Adaptation, Physiological , Water
17.
Plant Commun ; 4(5): 100599, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37050879

ABSTRACT

Studies of plants have been instrumental for revealing how new species originate. For several decades, botanical research has complemented and, in some cases, challenged concepts on speciation developed via the study of other organisms while also revealing additional ways in which species can form. Now, the ability to sequence genomes at an unprecedented pace and scale has allowed biologists to settle decades-long debates and tackle other emerging challenges in speciation research. Here, we review these recent genome-enabled developments in plant speciation. We discuss complications related to identification of reproductive isolation (RI) loci using analyses of the landscape of genomic divergence and highlight the important role that structural variants have in speciation, as increasingly revealed by new sequencing technologies. Further, we review how genomics has advanced what we know of some routes to new species formation, like hybridization or whole-genome duplication, while casting doubt on others, like population bottlenecks and genetic drift. While genomics can fast-track identification of genes and mutations that confer RI, we emphasize that follow-up molecular and field experiments remain critical. Nonetheless, genomics has clarified the outsized role of ancient variants rather than new mutations, particularly early during speciation. We conclude by highlighting promising avenues of future study. These include expanding what we know so far about the role of epigenetic and structural changes during speciation, broadening the scope and taxonomic breadth of plant speciation genomics studies, and synthesizing information from extensive genomic data that have already been generated by the plant speciation community.


Subject(s)
Genomics , Plants , Plants/genetics , Genome, Plant/genetics , Reproductive Isolation , Hybridization, Genetic
18.
Proc Biol Sci ; 279(1737): 2377-85, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22319123

ABSTRACT

Elucidating the factors that shape species distributions has long been a fundamental goal in ecology and evolutionary biology. In spite of significant theoretical advancements, empirical studies of range limits have lagged behind. Specifically, little is known about how the attributes that allow species to expand their ranges and become widespread vary across phylogenies. Here, we studied the ascidian Botryllus schlosseri, a worldwide invasive species that is also characterized by marked genetic subdivision. Our study includes phylogenetic and population genetic data based on mitochondrial and nuclear genes, as well as polymorphic microsatellites for B. schlosseri colonies sampled from the southern and northern coasts of Europe and the eastern and western coasts of North America. We demonstrate that this well-known model organism comprises three highly divergent and probably reproductively isolated cryptic species (A, D and E), with two more (B and C) being suggested by data retrieved from GenBank. Among these, species A, recovered in all of the surveyed regions, is by far the most common and widespread. By contrast, species B-E, occurring mostly in sites from northern Europe, are considerably more geographically restricted. These findings, along with inferences made on transport opportunity, suggest that divergent evolutionary histories promoted differences in invasive potential between B. schlosseri sibling species, indicating that attributes that facilitate dramatic shifts in range limits can evolve more easily and frequently than previously thought. We propose environmental disturbance as a selective force that could have shaped the evolution of invasiveness in the B. schlosseri complex.


Subject(s)
Biological Evolution , Demography , Introduced Species , Phylogeny , Polymorphism, Genetic , Urochordata/classification , Urochordata/genetics , Animals , Base Sequence , Bayes Theorem , Cluster Analysis , Computational Biology , DNA Primers/genetics , DNA, Mitochondrial/genetics , Europe , Genetics, Population , Geography , Microsatellite Repeats/genetics , Models, Genetic , Molecular Sequence Data , North America , Phylogeography , Sequence Analysis, DNA , Species Specificity
19.
Mol Ecol ; 21(6): 1411-22, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22269101

ABSTRACT

Whether speciation can advance to completion in the face of initially high levels of gene flow is a very controversial topic in evolutionary biology. Extensive gene exchange is generally considered to homogenize populations and counteract divergence. Moreover, the role of introgressive hybridization in evolution remains largely unexplored in animals, particularly in freshwater zooplankton in which allopatric speciation is considered to be the norm. Our work investigates the genetic structure of two young ecological species: the pond species, Daphnia pulex and the lake species, Daphnia pulicaria. Phylogenetic and population genetics analyses were conducted on mitochondrial NADH dehydrogenase 5 (ND5) gene, the nuclear Lactate dehydrogenase (Ldh) gene and 21 nuclear microsatellite markers in 416 individuals from habitats with various degrees of permanence. The strong and consistent phylogenetic discordance between nuclear and mitochondrial markers suggests a complex evolutionary history of multiple independent habitat transition events that involved hybridization and introgression between lake and pond Daphnia. On the other hand, the low level of contemporary gene flow between adjacent populations indicates the presence of effective habitat isolating barriers. The Daphnia system provides strong evidence for a divergence-with-gene flow speciation model that involves multiple habitat transition events.


Subject(s)
Daphnia/classification , Daphnia/genetics , Ecosystem , Gene Flow , Genetic Speciation , Animals , DNA, Mitochondrial/genetics , Evolution, Molecular , Genetics, Population , Lakes , Microsatellite Repeats/genetics , Models, Genetic , Phylogeny , Ponds
20.
Mol Ecol ; 21(17): 4227-41, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22804778

ABSTRACT

The relative importance of multiple vectors to the initial establishment, spread and population dynamics of invasive species remains poorly understood. This study used molecular methods to clarify the roles of commercial shipping and recreational boating in the invasion by the cosmopolitan tunicate, Botryllus schlosseri. We evaluated (i) single vs. multiple introduction scenarios, (ii) the relative importance of shipping and boating to primary introductions, (iii) the interaction between these vectors for spread (i.e. the presence of a shipping-boating network) and (iv) the role of boating in determining population similarity. Tunicates were sampled from 26 populations along the Nova Scotia, Canada, coast that were exposed to either shipping (i.e. ports) or boating (i.e. marinas) activities. A total of 874 individuals (c. 30 per population) from five ports and 21 marinas was collected and analysed using both mitochondrial cytochrome c oxidase subunit I gene (COI) and 10 nuclear microsatellite markers. The geographical location of multiple hotspot populations indicates that multiple invasions have occurred in Nova Scotia. A loss of genetic diversity from port to marina populations suggests a stronger influence of ships than recreational boats on primary coastal introductions. Population genetic similarity analysis reveals a dependence of marina populations on those that had been previously established in ports. Empirical data on marina connectivity because of boating better explains patterns in population similarities than does natural spread. We conclude that frequent primary introductions arise by ships and that secondary spread occurs gradually thereafter around individual ports, facilitated by recreational boating.


Subject(s)
Genetics, Population , Introduced Species , Ships , Urochordata/genetics , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Genetic Variation , Microsatellite Repeats , Molecular Sequence Data , Nova Scotia , Phylogeography , Population Dynamics , Recreation , Sequence Analysis, DNA , Transportation
SELECTION OF CITATIONS
SEARCH DETAIL