Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Theor Appl Genet ; 135(12): 4409-4419, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36201026

ABSTRACT

KEY MESSAGE: We identified and integrated the novel FHB-resistant Fhb7The2 allele into wheat B genome and made it usable in both common and durum wheat breeding programs without yellow flour linkage drag. A novel tall wheatgrass-derived (Thinopyrum elongatum, genome EE) Fhb7 allele, designated Fhb7The2, was identified and integrated into the wheat B genome through a small 7B-7E translocation (7BS·7BL-7EL) involving the terminal regions of the long arms. Fhb7The2 conditions significant Type II resistance to Fusarium head blight (FHB) in wheat. Integration of Fhb7The2 into the wheat B genome makes this wild species-derived FHB resistance gene usable for breeding in both common and durum wheat. By contrast, other Fhb7 introgression lines involving wheat chromosome 7D can be utilized only in common wheat breeding programs, not in durum wheat. Additionally, we found that Fhb7The2 does not have the linkage drag of the yellow flour pigment gene that is tightly linked to the decaploid Th. ponticum-derived Fhb7 allele Fhb7Thp. This will further improve the utility of Fhb7The2 in wheat breeding. DNA sequence analysis identified 12 single nucleotide polymorphisms (SNPs) in Fhb7The2, Fhb7Thp, and another Th. elongatum-derived Fhb7 allele Fhb7The1, which led to seven amino acid conversions in Fhb7The2, Fhb7Thp, and Fhb7The1, respectively. However, no significant variation was observed in their predicted protein configuration as a glutathione transferase. Diagnostic DNA markers were developed specifically for Fhb7The2. The 7EL segment containing Fhb7The2 in the translocation chromosome 7BS·7BL-7EL exhibited a monogenic inheritance pattern in the wheat genetic background. This will enhance the efficacy of marker-assisted selection for Fhb7The2 introgression, pyramiding, and deployment in wheat germplasm and varieties.


Subject(s)
Fusarium , Triticum , Triticum/genetics , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Poaceae/genetics
2.
Bioorg Med Chem ; 27(4): 579-588, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30626555

ABSTRACT

The antioxidant natural product sulforaphane (SFN) is an oil with poor aqueous and thermal stability. Recent work with SFN has sought to optimize methods of formulation for oral and topical administration. Herein we report the design of new analogs of SFN with the goal of improving stability and drug-like properties. Lead compounds were selected based on potency in a cellular screen and physicochemical properties. Among these, 12 had good aqueous solubility, permeability and long-term solid-state stability at 23 °C. Compound 12 also displayed comparable or better efficacy in cellular assays relative to SFN and had in vivo activity in a mouse cigarette smoke challenge model of acute oxidative stress.


Subject(s)
Antioxidants/pharmacology , Cyclobutanes/pharmacology , Drug Discovery , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Animals , Antioxidants/chemical synthesis , Antioxidants/pharmacokinetics , Cell Line , Cyclobutanes/chemical synthesis , Cyclobutanes/pharmacokinetics , Gene Expression , Heme Oxygenase-1/genetics , Humans , Isothiocyanates/chemical synthesis , Isothiocyanates/pharmacokinetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice, Inbred C57BL , Molecular Structure , Oxidative Stress/drug effects , Rats , Solubility , Structure-Activity Relationship , Sulfoxides , Thiocarbamates/chemical synthesis , Thiocarbamates/pharmacokinetics , Thiocarbamates/pharmacology
3.
Theor Appl Genet ; 131(3): 659-671, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29224171

ABSTRACT

KEY MESSAGE: Four soybean storage protein subunit QTLs were mapped using bulked segregant analysis and an F2 population, which were validated with an F5 RIL population. The storage protein globulins ß-conglycinin (7S subunit) and glycinin (11S subunits) can affect the quantity and quality of proteins found in soybean seeds and account for more than 70% of the total soybean protein. Manipulating the storage protein subunits to enhance soymeal nutrition and for desirable tofu manufacturing characteristics are two end-use quality goals in soybean breeding programs. To aid in developing soybean cultivars with desired seed composition, an F2 mapping population (n = 448) and an F5 RIL population (n = 180) were developed by crossing high protein cultivar 'Harovinton' with the breeding line SQ97-0263_3-1a, which lacks the 7S α', 11S A1, 11S A2, 11S A3 and 11S A4 subunits. The storage protein composition of each individual in the F2 and F5 populations were profiled using SDS-PAGE. Based on the presence/absence of the subunits, genomic DNA bulks were formed among the F2 plants to identify genomic regions controlling the 7S α' and 11S protein subunits. By utilizing polymorphic SNPs between the bulks characterized with Illumina SoySNP50K iSelect BeadChips at targeted genomic regions, KASP assays were designed and used to map QTLs causing the loss of the subunits. Soybean storage protein QTLs were identified on Chromosome 3 (11S A1), Chromosome 10 (7S α' and 11S A4), and Chromosome 13 (11S A3), which were also validated in the F5 RIL population. The results of this research could allow for the deployment of marker-assisted selection for desired storage protein subunits by screening breeding populations using the SNPs linked with the subunits of interest.


Subject(s)
Antigens, Plant/genetics , Globulins/genetics , Glycine max/genetics , Quantitative Trait Loci , Seed Storage Proteins/genetics , Soybean Proteins/genetics , Chromosome Mapping , Crosses, Genetic , Gene Frequency , Genotype , Polymorphism, Single Nucleotide , Protein Subunits/genetics , Seeds
4.
Analyst ; 139(8): 1902-12, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24563904

ABSTRACT

Activation of the Nrf2 stress pathway is known to play an important role in the defense mechanism against electrophilic and oxidative damage to biological macromolecules (DNA, lipids, and proteins). Chemical inducers of Nrf2 such as sulforaphane, dimethyl fumarate (Tecfidera®), CDDO-Me (bardoxolone-methyl), and 3-(dimethylamino)-4-((3-isothiocyanatopropyl)(methyl)amino)cyclobut-3-ene-1,2-dione (a synthetic sulforaphane analogue; will be referred to as ) have the ability to react with Keap1 cysteine residues, leading to activation of the Antioxidant Response Element (ARE). Due to their electrophilic nature and poor matrix stability, these compounds represent great challenges when developing bioanalytical methods to evaluate in vivo exposure. like SFN reacts rapidly with glutathione (GSH) and nucleophilic groups in proteins to form covalent adducts. In this work, three procedures were developed to estimate the exposure of in a non-GLP 7 day safety study in rats: (1) protein precipitation of blood samples with methanol containing the free thiol trapping reagent 4-fluoro-7-aminosulfonylbenzofurazan (ABD-F) to measure GSH- and N-acetylcysteine conjugated metabolites of ; (2) an Edman degradation procedure to cleave and analyze N-terminal adducts of at the valine moiety; and (3) treatment with ammonium hydroxide to measure circulating free- and all sulfhydryl bound .


Subject(s)
NF-E2-Related Factor 2/metabolism , Toxicity Tests , Animals , Area Under Curve , Chromatography, Liquid , Male , Rats , Reference Standards , Tandem Mass Spectrometry
5.
Plants (Basel) ; 13(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38337872

ABSTRACT

Wheat, including durum and common wheat, respectively, is an allopolyploid with two or three homoeologous subgenomes originating from diploid wild ancestral species. The wheat genome's polyploid origin consisting of just three diploid ancestors has constrained its genetic variation, which has bottlenecked improvement. However, wheat has a large number of relatives, including cultivated crop species (e.g., barley and rye), wild grass species, and ancestral species. Moreover, each ancestor and relative has many other related subspecies that have evolved to inhabit specific geographic areas. Cumulatively, they represent an invaluable source of genetic diversity and variation available to enrich and diversify the wheat genome. The ancestral species share one or more homologous genomes with wheat, which can be utilized in breeding efforts through typical meiotic homologous recombination. Additionally, genome introgressions of distant relatives can be moved into wheat using chromosome engineering-based approaches that feature induced meiotic homoeologous recombination. Recent advances in genomics have dramatically improved the efficacy and throughput of chromosome engineering for alien introgressions, which has served to boost the genetic potential of the wheat genome in breeding efforts. Here, we report research strategies and progress made using alien introgressions toward the enrichment and diversification of the wheat genome in the genomics era.

6.
Plant Genome ; 15(2): e20183, 2022 06.
Article in English | MEDLINE | ID: mdl-35229982

ABSTRACT

Hexaploid-derived resistance genes exhibit complex inheritance and expression patterns in tetraploid backgrounds. This study aimed to characterize the inheritance patterns and genomic compatibilities of hexaploid-derived Fusarium head blight (FHB) resistance genes in tetraploid durum wheat (Triticum durum Desf.). Evaluation of FHB resistance for F1 hybrids of hexaploid 'Sumai 3' crossed with tetraploid and hexaploid wheats indicated that Sumai 3-derived FHB resistance genes exhibit a dominant phenotypic effect seen only in hexaploid hybrids. Alternately, the hexaploid-derived FHB resistance genes from PI 277012 exhibited complete dominance in the crosses with both tetraploid and hexaploid wheat. FHB evaluation of the F1 hybrids of Sumai 3 and PI 277012 crossed with 'Langdon' (LDN)-'Chinese Spring' D-genome substitution lines suggested that chromosomes 2B, 3B, 4B, 5B, 6B, 3A, 4A, 6A, and 7A contain genes that suppress expression of the Sumai 3-derived FHB resistance, whereas chromosomes 4A, 6A, and 6B contain genes required for expression of PI 277012-derived FHB resistance. A wide range of segregation for FHB severity (10-90%) was observed in the F2 generation of Sumai 3 crossed with durum cultivars LDN and 'Divide', but the distribution of F3 families derived from the most resistant F2 segregants was skewed towards susceptibility. Similar segregation trends were observed in the crosses of PI 277012 with other durum wheats, whereby FHB resistance became slightly diluted over successive generations. These results suggest tetraploid durum wheat contains the unique alleles at multiple gene loci on different chromosomes that positively and/or negatively regulate the expression of hexaploid-derived FHB resistance genes, which complicate efforts to deploy these genes in durum breeding programs.


Subject(s)
Fusarium , Triticum , Disease Resistance/genetics , Fusarium/physiology , Genomics , Inheritance Patterns , Plant Breeding , Plant Diseases/genetics , Tetraploidy , Triticum/genetics
7.
J Med Chem ; 65(21): 14391-14408, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36302181

ABSTRACT

E1A binding protein (p300) and CREB binding protein (CBP) are two highly homologous and multidomain histone acetyltransferases. These two proteins are involved in many cellular processes by acting as coactivators of a large number of transcription factors. Dysregulation of p300/CBP has been found in a variety of cancers and other diseases, and inhibition has been shown to decrease Myc expression. Herein, we report the identification of a series of highly potent, proline-based small-molecule p300/CBP histone acetyltransferase (HAT) inhibitors using DNA-encoded library technology in combination with high-throughput screening. The strategy of reducing ChromlogD and fluorination of metabolic soft spots was explored to improve the pharmacokinetic properties of potent p300 inhibitors. Fluorination of both cyclobutyl and proline rings of 22 led to not only reduced clearance but also improved cMyc cellular potency.


Subject(s)
CREB-Binding Protein , High-Throughput Screening Assays , Proline , Histone Acetyltransferases , Adenovirus E1A Proteins/metabolism , p300-CBP Transcription Factors , DNA , Technology
8.
PLoS One ; 16(3): e0247809, 2021.
Article in English | MEDLINE | ID: mdl-33662021

ABSTRACT

Plant breeding and disease management practices have increased the grain yield of hard winter wheat (Triticum aestivum L.) adapted to the Great Plains of the United States during the last century. However, the effect of genetic gains for seed yield and the application of fungicide on the micronutrient and cadmium (Cd) concentration in wheat grains is still unclear. The objectives of this study were to evaluate the effects of fungicide application on the productivity and nutritional quality of wheat cultivars representing 80 years of plant breeding efforts. Field experiments were conducted over two crop years (2017 and 2018) with eighteen hard winter wheat genotypes released between 1933 and 2013 in the presence or absence of fungicide application. For each growing season, the treatments were arranged in a split-plot design with the fungicide levels (treated and untreated) as the whole plot treatments and the genotypes as split-plot treatments in triplicate. The effects on seed yield, grain protein concentration (GPC), micronutrients, phytic acid, and Cd in grains were measured. While the yield of wheat was found to increase at annualized rates of 26.5 and 13.0 kg ha-1 yr-1 in the presence and absence of fungicide (P < 0.001), respectively, GPC (-190 and -180 mg kg-1 yr-1, P < 0.001), Fe (-35.0 and -44.0 µg kg-1 yr-1, P < 0.05), and Zn (-68.0 and -57.0 µg kg-1 yr-1, P < 0.01) significantly decreased during the period studied. In contrast to the other mineral elements, grain Cd significantly increased over time (0.4 µg kg-1 yr-1, P < 0.01) in the absence of fungicide. The results from this study are of great concern, as many mineral elements essential for human nutrition have decreased over time while the toxic heavy metal, Cd, has increased, indicating modern wheats are becoming a better vector of dietary Cd.


Subject(s)
Cadmium/metabolism , Fungicides, Industrial/adverse effects , Micronutrients/analysis , Minerals/analysis , Plant Breeding/methods , Triticum/growth & development , Edible Grain/metabolism , Genotype , Seasons , Soil Pollutants/analysis , Triticum/drug effects , Triticum/genetics , Triticum/metabolism
9.
Front Plant Sci ; 10: 401, 2019.
Article in English | MEDLINE | ID: mdl-31031779

ABSTRACT

Soybean cyst nematode (Heterodera glycines Ichinohe) (SCN) is the most destructive pest affecting soybeans [Glycine max (L.) Merr.] in the U.S. To date, only two major SCN resistance alleles, rhg1 and Rhg4, identified in PI 88788 (rhg1) and Peking (rhg1/Rhg4), residing on chromosomes (Chr) 18 and 8, respectively, have been widely used to develop SCN resistant cultivars in the U.S. Thus, some SCN populations have evolved to overcome the PI 88788 and Peking derived resistance, making it a priority for breeders to identify new alleles and sources of SCN resistance. Toward that end, 461 soybean accessions from various origins were screened using a greenhouse SCN bioassay and genotyped with Illumina SoySNP50K iSelect BeadChips and three KASP SNP markers developed at the Rhg1 and Rhg4 loci to perform a genome-wide association study (GWAS) and a haplotype analysis at the Rhg1 and Rhg4 loci. In total, 35,820 SNPs were used for GWAS, which identified 12 SNPs at four genomic regions on Chrs 7, 8, 10, and 18 that were significantly associated with SCN resistance (P < 0.001). Of those, three SNPs were located at Rhg1 and Rhg4, and 24 predicted genes were found near the significant SNPs on Chrs 7 and 10. KASP SNP genotyping results of the 462 accessions at the Rhg1 and Rhg4 loci identified 30 that carried PI 88788-type resistance, 50 that carried Peking-type resistance, and 58 that carried neither the Peking-type nor the PI 88788-type resistance alleles, indicating they may possess novel SCN resistance alleles. By using two subsets of SNPs near the Rhg1 and Rhg4 loci obtained from SoySNP iSelect BeadChips, a haplotype analysis of 461 accessions grouped those 58 accessions differently from the accessions carrying Peking or PI 88788 derived resistance, thereby validating the genotyping results at Rhg1 and Rhg4. The significant SNPs, candidate genes, and newly characterized SCN resistant accessions will be beneficial for the development of DNA markers to be used for marker-assisted breeding and developing soybean cultivars carrying novel sources of SCN resistance.

10.
ACS Med Chem Lett ; 9(12): 1164-1169, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30613320

ABSTRACT

IκB kinase ß (IKKß or IKK2) is a key regulator of nuclear factor kappa B (NF-κB) and has received attention as a therapeutic target. Herein we report on the optimization of a series of 3,5-disubstituted-indole-7-carboxamides for oral activity. In doing so, we focused attention on potency, ligand efficiency (LE), and physicochemical properties and have identified compounds 24 and (R)-28 as having robust in vivo activity.

11.
Nat Rev Drug Discov ; 2(9): 717-26, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12951578

ABSTRACT

The p38 MAP kinases are a family of serine/threonine protein kinases that play important roles in cellular responses to external stress signals. Since their identification about 10 years ago, much has been learned of the activation and regulation of the p38 MAP kinase pathways. Inhibitors of two members of the p38 family have been shown to have anti-inflammatory effects in preclinical disease models, primarily through the inhibition of the expression of inflammatory mediators. Several promising compounds have also progressed to clinical trials. In this review, we provide an overview of the role of p38 MAP kinases in stress-activated pathways and the progress towards clinical development of p38 MAP kinase inhibitors in the treatment of inflammatory diseases.


Subject(s)
Drug Delivery Systems/methods , Enzyme Inhibitors/therapeutic use , Inflammation/drug therapy , Inflammation/enzymology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/physiology , Animals , Humans , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases
12.
Plant Genome ; 10(3)2017 11.
Article in English | MEDLINE | ID: mdl-29293810

ABSTRACT

The durum wheat ( ssp. (Desf.) Husn.) cultivar Soft Svevo with a soft kernel texture was developed through a -mediated homoeologous 5DS-5BS chromosomal translocation. The soft kernel trait ( locus) derived from chromosome 5D of the common wheat ( L.) cultivar Chinese Spring. Soft Svevo was used as the donor parent to create near-isogenic soft durum germplasm. The size of the translocation, its estimated breakpoint, and the amount of chromosome 5BS translocated, if any, remain unknown. Four near-isogenic pairs of hard and soft kernel durum genotypes, in addition to Soft Svevo and the Chinese Spring deletion line 5DS-2, which lacks a distal 22% terminal segment of chromosome 5DS, were genotyped using Illumina's 90k wheat single nucleotide polymorphism array. Single nucleotide polymorphism results were processed in GenomeStudio and 164 polymorphic markers were identified between the near-isogenic lines (NILs). Subsequent BLASTn results for two subsets of markers corresponding to the distal ends of chromosomes 5DS and 5BS indicated that the translocation event was nearly reciprocal, as a ∼24.36-Mbp segment of chromosome 5DS was gained, whereas a ∼20.01-Mbp segment of chromosome 5BS was lost. Genomic in situ hybridization images of the soft durum NILs agreed with these estimates and confirmed the absence of additional terminal or interstitial translocations. Soft durum represents the potential of a new wheat market class and these findings will assist durum wheat breeders in the development of new soft durum germplasm.


Subject(s)
Chromosomes, Plant , Translocation, Genetic , Triticum/genetics , Genetic Markers , Genotype , In Situ Hybridization , Karyotyping , Polymorphism, Single Nucleotide
13.
Curr Opin Investig Drugs ; 4(9): 1059-64, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14582449

ABSTRACT

p38 Mitogen-activated protein kinase (MAPK) has been implicated in cardiovascular disease and is activated by various factors, including neurohormones (e.g., catecholamines, angiotensin II and endothelin), hypoxia and wall stress. Activation of p38 MAPK can cause cardiac hypertrophy, negative inotropy and endothelial dysfunction. All of these conditions lead to chronic cardiovascular disease, which is becoming an ever growing burden on society. p38 MAPK inhibition may therefore be an interesting therapeutic approach to the treatment of various cardiovascular diseases. However, in vitro and in vivo results are conflicting and caution must be applied in the translation of bench results to the clinic.


Subject(s)
Cardiovascular Diseases/drug therapy , Enzyme Inhibitors/therapeutic use , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Animals , Cardiovascular Diseases/enzymology , Chronic Disease , Clinical Trials as Topic , Enzyme Inhibitors/chemistry , Heart/drug effects , Humans , Molecular Structure , Myocardium/enzymology , p38 Mitogen-Activated Protein Kinases
14.
Bioorg Med Chem Lett ; 13(6): 1191-4, 2003 Mar 24.
Article in English | MEDLINE | ID: mdl-12643941

ABSTRACT

The design, synthesis and SAR of a series of 2,6,9-trisubstituted purine inhibitors of p38alpha kinase is reported. Synthetic routes were devised to allow for array synthesis in which all three points of diversity could be facilely explored. The binding of this novel series to p38alpha kinase, which was predicted to have several key interactions in common with SB-203580, was confirmed by X-ray crystallography of 19 (p38 IC(50)=82 nM).


Subject(s)
Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Urea/chemical synthesis , Urea/pharmacology , Crystallography, X-Ray , Drug Design , Indicators and Reagents , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Structure-Activity Relationship , Urea/analogs & derivatives , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL