Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Affiliation country
Publication year range
1.
Prostate ; 83(12): 1193-1200, 2023 09.
Article in English | MEDLINE | ID: mdl-37211866

ABSTRACT

BACKGROUND: Bone is the most common site of metastases in men with prostate cancer. The objective of this study was to explore potential racial differences in the distribution of tumor metastases in the axial and appendicular skeleton. METHODS: We conducted a retrospective review of patients with metastatic prostate cancer to the bone as detected by 18 F-sodium fluoride positron emission tomography/computed tomography (18 F-NaF PET/CT) scans. In addition to describing patients' demographics and clinical characteristics, the metastatic bone lesions, and healthy bone regions were detected and quantified volumetrically using a quantitative imaging platform (TRAQinform IQ, AIQ Solutions). RESULTS: Forty men met the inclusion criteria with 17 (42%) identifying as African Americans and 23 (58%) identifying as non-African Americans. Most of the patients had axial (skull, ribcage, and spine) disease. The location and the number of lesions in the skeleton of metastatic prostate cancer patients with low disease burden were not different by race. CONCLUSIONS: In low-disease burden patients with metastatic prostate cancer, there were no overall differences by race in the location and number of lesions in axial or appendicular skeleton. Therefore, given equal access to molecular imaging, African Americans might derive similar benefits. Whether this holds true for patients with a higher disease burden or for other molecular imaging techniques is a topic for further study.


Subject(s)
Bone Neoplasms , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Sodium Fluoride , Fluorine Radioisotopes , Positron-Emission Tomography/methods , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary
2.
Prostate ; 82(6): 666-675, 2022 05.
Article in English | MEDLINE | ID: mdl-35133686

ABSTRACT

BACKGROUND: In situ metabolism of ethanol by alcohol dehydrogenases (ADHs) contributes to oxidative damage of cells and DNA and has been linked to carcinogenesis in numerous epithelial tissues. The goal of this study was to determine expression patterns of ADH1 and ADH7 isozymes in normal, hyperplastic (benign prostatic hyperplasia [BPH]) and neoplastic (prostate cancer [PCa]) prostate. Furthermore, racial differences in ADH expression between African Americans and Caucasians were investigated. METHODS: ADH expression patterns were characterized by density analysis of ADH immunohistochemistry (n = 21) and real-time RT-PCR of total RNAs by laser-capture microdissection (n = 10) and whole tissue formalin-fixed paraffin embedded prostate biopsies (n = 63). RESULTS: ADH protein is found in normal prostate and is primarily associated with glandular epithelium. Transcripts of ADH1B are suppressed in PCa compared to BPH (p = 0.0095). Racial differences in ADH7 transcripts exist between African American and Caucasian men. A total of 57.6% of biopsies from African American prostates have detectable ADH7 messenger RNA (mRNA) transcripts compared to the 13.3% of Caucasian prostate biopsies with detectable transcripts (p = 0.0005). This increased frequency of detection contributes to higher mean ADH7 mRNA transcript levels in African Americans (p = 0.001). CONCLUSIONS: To our knowledge this study is the first to report downregulation of ADH1B in neoplastic prostate at the transcriptional level, suggesting protective regulatory functions. ADH7 transcripts were not detectable in all samples and was found in higher frequency and amount in our African American samples. Racial differences in ADH7 within the prostate is a novel finding and should be investigated further.


Subject(s)
Adenocarcinoma , Prostatic Hyperplasia , Prostatic Neoplasms , Adenocarcinoma/pathology , Black or African American/genetics , Alcohol Dehydrogenase/genetics , Alcohol Dehydrogenase/metabolism , Humans , Male , Prostate/pathology , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/pathology , RNA, Messenger/metabolism
3.
Breast Cancer Res Treat ; 185(3): 831-839, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33113091

ABSTRACT

PURPOSE: Markers of inflammation, including crown-like structures of the breast (CLS-B) and infiltrating lymphocytes (IL), have been identified in breast tissue and associated with increased risk of breast cancer (BrCa), however most of this work has been performed in primarily non-Hispanic white women. Here, we examined whether CLS-B and IL are associated with invasive BrCa in African American (AA) women. METHODS: We assessed breast biopsies from three 5-year age-matched groups: BrCa-free AA women (50 Volunteer) from the Komen Normal Tissue Bank (KTB) and AA women with a clinically-indicated biopsy diagnosed with benign breast disease (BBD) from our Detroit cohort who developed BrCa (55 BBD-cancer) or did not develop BrCa (47 BBD only, year of biopsy matched to BBD-cancer). Mean adipocyte diameter and total adipose area were estimated from digital images using the Adiposoft plugin from ImageJ. Associations between CLS-B, IL, and BrCa among KTB and Detroit biopsies were assessed using multivariable multinomial and conditional logistic regression models. RESULTS: Among all biopsies, Volunteer and BBD only biopsies did not harbor CLS-B or IL at significantly different rates after adjusting for logarithm of adipocyte area, adipocyte diameter, and BMI. Among clinically-indicated BBD biopsies, BBD-cancer biopsies were more likely to exhibit CLS-B (odds ratio (OR) = 3.36, 95% Confidence Interval (CI): 1.33-8.48) or IL (OR = 4.95, 95% CI 1.76-13.9) than BBD only biopsies after adjusting for total adipocyte area, adipocyte diameter, proliferative disease, and BMI. CONCLUSIONS: CLS-B and IL may serve as histological markers of BrCa risk in benign breast biopsies from AA women.


Subject(s)
Breast Neoplasms , Black or African American , Biopsy , Breast , Breast Neoplasms/epidemiology , Female , Humans , Inflammation , Risk Factors
4.
Breast Cancer Res ; 22(1): 37, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32295603

ABSTRACT

BACKGROUND: At least 50% of triple negative breast cancer (TNBC) overexpress the epidermal growth factor receptor, EGFR, which paved the way for clinical trials investigating its blockade. Outcomes remained dismal stemming from mechanisms of resistance particularly the nuclear cycling of EGFR, which is enhanced by Src activation. Attenuation of Src reversed nuclear translocation, restoring EGFR to the cell surface. Herein, we hypothesize that changes in cellular distribution of EGFR upon Src inhibition with dasatinib can be annotated through the EGFR immunopositron emission tomography (immunoPET) radiotracer, [89Zr]Zr-cetuximab. METHODS: Nuclear and non-nuclear EGFR levels of dasatinib-treated vs. untreated MDA-MB-231 and MDA-MB-468 cells were analyzed via immunoblots. Both treated and untreated cells were exposed to [89Zr]Zr-cetuximab to assess binding at 4 °C and 37 °C. EGFR-positive MDA-MB-231, MDA-MB-468, and a patient-derived xenograft were treated with dasatinib or vehicle followed by cetuximab PET imaging to compare EGFR levels. After imaging, the treated mice were separated into two groups: one cohort continued with dasatinib with the addition of cetuximab while the other cohort received dasatinib alone. Correlations between the radiotracer uptake vs. changes in tumor growth and EGFR expression from immunoblots were analyzed. RESULTS: Treated cells displayed higher binding of [89Zr]Zr-cetuximab to the cell membrane at 4 °C and with greater internalized activity at 37 °C vs. untreated cells. In all tumor models, higher accumulation of the radiotracer in dasatinib-treated groups was observed compared to untreated tumors. Treated tumors displayed significantly decreased pSrc (Y416) with retained total Src levels compared to control. In MDA-MB-468 and PDX tumors, the analysis of cetuximab PET vs. changes in tumor volume showed an inverse relationship where high tracer uptake in the tumor demonstrated minimal tumor volume progression. Furthermore, combined cetuximab and dasatinib treatment showed better tumor regression compared to control and dasatinib-only-treated groups. No benefit was achieved in MDA-MB-231 xenografts with the addition of cetuximab, likely due to its KRAS-mutated status. CONCLUSIONS: Cetuximab PET can monitor effects of dasatinib on EGFR cellular distribution and potentially inform treatment response in wild-type KRAS TNBC.


Subject(s)
Cell Proliferation , Cetuximab/metabolism , Dasatinib/pharmacology , Positron-Emission Tomography/methods , Radioisotopes/metabolism , Triple Negative Breast Neoplasms/pathology , Zirconium/metabolism , Animals , Antineoplastic Agents, Immunological/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , Female , Humans , Mice , Mice, Nude , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Xenograft Model Antitumor Assays
5.
Drug Metab Dispos ; 44(5): 665-71, 2016 May.
Article in English | MEDLINE | ID: mdl-26953171

ABSTRACT

CYP1A1 and CYP1A2 are transcriptionally activated in the human normal breast epithelial cell line MCF10A following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Shifting MCF10A cultures to medium deficient in serum and epidermal growth factor (EGF) caused rapid reductions in the activated (i.e., phosphorylated) forms of extracellular regulated kinases (ERKs) and the epidermal growth factor receptor (EGFR). Shifting to serum/EGF-deficient medium also enhanced TCDD-mediated induction of cytochrome P450 (CYP)1A1 Treatment of cells cultured in complete medium with the EGFR inhibitors gefitinib (Iressa), AG1478, and CI-1033 resulted in concentration-dependent reductions of active EGFR and ERKs, and increased CYP1A1 mRNA content ∼3- to 18-fold above basal level. EGFR inhibitors synergized with TCDD and resulted in transient CYP1A1 and CYP1A2 mRNA accumulations ∼8-fold greater (maximum at 5 hours) than that achieved with only TCDD. AG1478, gefitinib, and TCDD individually induced small increases (∼1.2- to 2.5-fold) in CYP1A1 protein content but did not cause additive or synergistic accumulations of CYP1A1 protein when used in combination. The mitogen-activated protein kinase kinase inhibitor PD184352 inhibited ERK and EGFR activation in a concentration-dependent fashion without causing CYP1A1 mRNA accumulation. However, cotreatment with PD184352 potentiated TCDD-mediated CYP1A1 induction. TCDD-mediated induction of CYP1A1 in MCF7-TET on-EGFR cells, a MCF7 variant in which EGFR expression can be controlled, was not affected by the activity status of EGFR or ERKs. Hence, EGFR signaling mutes both basal and ligand-induced expression of two aryl hydrocarbon receptor-responsive P450s in MCF10A cultures. However, these effects are cell context-dependent. Furthermore, CYP1A1 mRNA and protein abundance are not closely coupled in MCF10A cultures.


Subject(s)
Breast/drug effects , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Epithelial Cells/drug effects , ErbB Receptors/antagonists & inhibitors , Polychlorinated Dibenzodioxins/pharmacology , Protein Kinase Inhibitors/pharmacology , Benzamides/pharmacology , Breast/metabolism , Cell Line , Drug Synergism , Epithelial Cells/metabolism , Gefitinib , Humans , MAP Kinase Kinase 1/antagonists & inhibitors , Morpholines/pharmacology , Quinazolines/pharmacology , RNA, Messenger/metabolism , Tyrphostins/pharmacology
6.
J Biol Chem ; 288(46): 33263-71, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24100030

ABSTRACT

TNF-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in transformed and tumor cells but not in normal cells, making it a promising agent for cancer therapy. However, many cancer cells are resistant to TRAIL, and the underlying mechanisms are not fully understood. Here, we show that the regulation of the PP2A and Src interaction plays a critical role in TRAIL resistance. Specifically, we show that TRAIL treatment activates the tyrosine kinase Src, which subsequently phosphorylates caspase-8 at tyrosine 380, leading to the inhibition of caspase-8 activation. We also show that upon TRAIL treatment, Src, caspase-8, and PP2A/C (a catalytic subunit of the PP2A phosphatase) are redistributed into lipid rafts, a microdomain of the plasma membrane enriched with cholesterol, where PP2A dephosphorylates Src at tyrosine 418 and in turn inhibits caspase-8 phosphorylation. Furthermore, we find that TRAIL treatment causes PP2A/C degradation. These data suggest that the balance between Src-mediated caspase-8 phosphorylation and the inactivation of Src-mediated caspase-8 phosphorylation by PP2A determines the outcome of TRAIL treatment in breast cancer cells. Therefore, this work identifies a novel mechanism by which the interaction between PP2A and Src in the context of caspase-8 activation modulates TRAIL sensitivity in cancer cells.


Subject(s)
Apoptosis , Caspase 8/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Protein Phosphatase 2/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , src-Family Kinases/metabolism , Caspase 8/genetics , Cell Line, Tumor , Humans , Membrane Microdomains/genetics , Membrane Microdomains/metabolism , Neoplasm Proteins/genetics , Neoplasms/genetics , Phosphorylation/genetics , Protein Phosphatase 2/genetics , Proteolysis , TNF-Related Apoptosis-Inducing Ligand/genetics , src-Family Kinases/genetics
7.
Breast Cancer Res Treat ; 147(2): 283-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25129346

ABSTRACT

Triple-negative breast cancer (TNBC) patients suffer from a highly malignant and aggressive disease. They have a high rate of relapse and often develop resistance to standard chemotherapy. Many TNBCs have elevated epidermal growth factor receptor (EGFR) but are resistant to EGFR inhibitors as monotherapy. In this study, we sought to find a combination therapy that could sensitize TNBC to EGFR inhibitors. Phospho-mass spectrometry was performed on the TNBC cell line, BT20, treated with 0.5 µM gefitinib. Immunoblotting measured protein levels and phosphorylation. Colony formation and growth assays analyzed the treatment on cell proliferation, while MTT assays determined the synergistic effect of inhibitor combination. A Dual-Luciferase reporter gene plasmid measured translation. All statistical analysis was done on CalucuSyn and GraphPad Prism using ANOVAs. Phospho-proteomics identified the mTOR pathway to be of interest in EGFR inhibitor resistance. In our studies, combining gefitinib and temsirolimus decreased cell growth and survival in a synergistic manner. Our data identified eIF4B, as a potentially key fragile point in EGFR and mTOR inhibitor synergy. Decreased eIF4B phosphorylation correlated with drops in growth, viability, clonogenic survival, and cap-dependent translation. Taken together, these data suggest EGFR and mTOR inhibitors abrogate growth, viability, and survival via disruption of eIF4B phosphorylation leading to decreased translation in TNBC cell lines. Further, including an mTOR inhibitor along with an EGFR inhibitor in TNBC with increased EGFR expression should be further explored. Additionally, translational regulation may play an important role in regulating EGFR and mTOR inhibitor synergy and warrant further investigation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , ErbB Receptors/antagonists & inhibitors , Eukaryotic Initiation Factors/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Drug Synergism , ErbB Receptors/metabolism , Female , Gefitinib , HEK293 Cells , Humans , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Quinazolines/administration & dosage , Quinazolines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Sirolimus/administration & dosage , Sirolimus/analogs & derivatives , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/pathology
8.
Article in English | MEDLINE | ID: mdl-38953893

ABSTRACT

BACKGROUND: African Americans have higher incidence and mortality from lung cancer than non-Hispanic Whites, but investigations into differences in immune response have been minimal. Therefore, we compared components of the tumor microenvironment among African Americans and non-Hispanic Whites diagnosed with non-small cell lung cancer (NSCLC) based on PD-L1 or tertiary lymphoid structure (TLS) status to identify differences of translational relevance. METHODS: Using a cohort of 280 NSCLC patients from the INHALE study (non-Hispanic White: n=155; African American: n=125), we evaluated PD-L1 tumor proportion score (<1% vs. ≥1%) and TLS status (presence/absence), comparing differences within the tumor microenvironment based on immune cell distribution and differential expression of genes. RESULTS: Tumors from African Americans had a higher proportion of plasma cell signatures within the tumor microenvironment than non-Hispanic Whites. In addition, gene expression patterns in African American PD-L1 positive samples suggest these tumors contained greater numbers of γδ T-cells and resting dendritic cells, along with fewer CD8+ T-cells after adjusting for age, sex, pack-years, stage, and histology. Investigation of differential expression of B-cell/plasma cell related genes between the two patient populations revealed that two immunoglobulin genes (IGKV2-29 and IGLL5) were associated with decreased mortality risk in African Americans. CONCLUSIONS: In the first known race-stratified analysis of tumor microenvironment components in lung cancer based on PD-L1 expression or TLS status, differences within the immune cell composition and transcriptomic signature were identified that may have therapeutic implications. IMPACT: Future investigation of racial variation within the tumor microenvironment may help direct the use of immunotherapy.

9.
Front Oncol ; 14: 1410819, 2024.
Article in English | MEDLINE | ID: mdl-38817898

ABSTRACT

The risk of developing subsequent breast cancer is higher in women diagnosed with benign breast disease (BBD) but these studies were primarily performed in non-Hispanic white populations. Still, these estimates have been used to inform breast cancer risk models that are being used clinically across all racial and ethnic groups. Given the high breast cancer mortality rates among African American (AA) women, it is critical to study BBD in this population, to ensure the risk models that include this information perform adequately. This study utilized data from AA women who underwent benign breast biopsies at a hospital served by the University Pathology Group in Detroit, Michigan, from 1998 to 2010. Patients were followed for subsequent breast cancers through the population-based Metropolitan Detroit Cancer Surveillance System (MDCSS). BBD lesion scores were assigned to represent the severity or extent of benign breast lesions, with higher scores indicating a greater number of distinct lesion types. Of 3,461 eligible AA women with BBD in the cohort, 6.88% (n=238) subsequently developed breast cancer. Examined individually, six of the eleven lesions (apocrine metaplasia, ductal hyperplasia, lobular hyperplasia, intraductal papilloma, sclerosing adenosis, columnar alterations and radial scars) were significantly associated with increased risk of breast cancer after adjustment for age and year of biopsy and were further considered in multiple lesion models. For every different type of benign breast lesion, subsequent risk of breast cancer increased by 25% (RR=1.25, 95% CI: 1.10, 1.42) after adjustment for age at biopsy and proliferative versus non-proliferative disease. In summary, this study affirms the increased breast cancer risk in AA women with BBD, particularly in those with multiple lesions. These findings have implications for the management of breast cancer risk in millions of women affected by BBD, a high risk group that could benefit from personalized surveillance and risk reduction strategies.

10.
Cancer Res Commun ; 4(7): 1715-1725, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38856749

ABSTRACT

Sipuleucel-T is an autologous cellular immunotherapy that targets prostatic acid phosphatase (PAP) and is available for treatment of men with asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer (mCRPC). In this single-arm, two-cohort, multicenter clinical study, potential racial differences in immune responses to sipuleucel-T in men with mCRPC were explored. Patients' blood samples were obtained to assess serum cytokines, humoral responses, and cellular immunity markers before and after treatment. Baseline cumulative product parameters (total nucleated and CD54+ cell counts and CD54 upregulation) were evaluated. IgM titers against the immunogen PA2024, the target antigen PAP, prostate-specific membrane antigen (PSMA) and prostate-specific antigen (PSA) were quantified by ELISA. Cytotoxic T-lymphocyte activity was determined by ELISpots, and cytokine and chemokine concentrations were determined by Luminex.Twenty-nine African American (AA) men and 28 non-African American (non-AA) men with mCRPC received sipuleucel-T. Baseline total nucleated cell count, CD54+ cell count, CD54 expression, and cumulative product parameters were higher in non-AA men. Although PSA baseline levels were higher in AA men, there were no racial differences in IgM antibody and IFNγ ELISpots responses against PA2024, PAP, PSA, and PSMA before and after treatment. Expression of co-stimulatory receptor ICOS on CD4+ and CD8+ T cells, and the levels of Th1 cytokine granulocyte-macrophage colony-stimulating factor and chemokines CCL4 and CCL5, were significantly higher in AA men before and/or after treatment. Despite no difference in the overall survival, PSA changes from baseline were significantly different between the two races. The data suggest that immune correlates in blood differ in AA and non-AA men with mCRPC pre- and post-sipuleucel-T. SIGNIFICANCE: Our novel findings of higher expression of co-stimulatory receptor ICOS on CD4+ and CD8+ T cells in African American patients with metastatic castrate-resistant prostate cancer (mCRPC) prior and post-sipuleucel-T suggest activation of CD4+ and CD8+ T cells. The data indicate that racial differences observed in these and other immune correlates before and after sipuleucel-T warrant additional investigation to further our understanding of the immune system in African American men and other men with mCRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Tissue Extracts , Aged , Humans , Male , Middle Aged , Black or African American , Cancer Vaccines/therapeutic use , Cytokines/blood , Neoplasm Metastasis , Prostate-Specific Antigen/blood , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms, Castration-Resistant/pathology , Tissue Extracts/therapeutic use , Tissue Extracts/pharmacology
11.
Biochem Pharmacol ; 220: 115981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38081370

ABSTRACT

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 enhanced VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, a purine biosynthesis inhibitor, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired AraC resistance showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. In vivo studies revealed significantly prolonged survival upon combination therapy of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia compared to the vehicle control. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.


Subject(s)
Isoflavones , Leukemia, Myeloid, Acute , Sulfonamides , Humans , Animals , Mice , Oxidative Phosphorylation , Leukemia, Myeloid, Acute/metabolism , Bridged Bicyclo Compounds, Heterocyclic , Isoflavones/pharmacology , Purines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
12.
J Surg Res ; 185(1): 231-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23899511

ABSTRACT

BACKGROUND: Patients presenting with triple-negative breast cancers (TNBCs) have a poorer prognosis compared with those with other subtypes of breast cancer. The majority of TNBCs overexpress epidermal growth factor receptor (EGFR). However, EGFR inhibition as a monotherapy, as with the monoclonal antibody cetuximab, is ineffective. Src family tyrosine kinases play a critical role in signal transduction downstream of growth factor receptors and are involved in the development of EGFR inhibitor resistance. We hypothesize that dasatinib, an Src family tyrosine kinase inhibitor, may help overcome EGFR resistance to cetuximab, and in combination with cisplatin may enhance growth inhibition and apoptosis and reduce metastatic potential. METHODS: Growth inhibition, apoptosis, cell migration and invasion, and effects on EGFR, Akt, and mitogen-activated protein kinase phosphorylation were examined in a panel of breast cancer cell lines, including seven TNBC cell lines. RESULTS: Six out of seven TNBC cell lines demonstrated a synergistic interaction using the triple-drug combination, compared with only two TNBC cell lines with the cisplatin and cetuximab combination. An induction of apoptosis and decrease in EGFR and mitogen-activated protein kinase phosphorylation, and thus resensitization to EGFR inhibition, was observed using the three-drug treatment regimen. A significant reduction (P < 0.001) in tumor cell migration and invasion was also found following dasatinib treatment alone or in combination. CONCLUSIONS: These findings may have important clinical implications in treating TNBC patients whose tumors co-overexpress both EGFR and c-Src. Identification of this subset of patients may be beneficial in the design of a clinical trial using this treatment regimen.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Cisplatin/pharmacology , Pyrimidines/pharmacology , Thiazoles/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cetuximab , Dasatinib , Drug Resistance, Neoplasm , Drug Synergism , ErbB Receptors/antagonists & inhibitors , Female , Humans , Neoplasm Invasiveness/pathology , Protein Kinase Inhibitors/pharmacology
13.
Exp Cell Res ; 318(16): 2014-21, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22687878

ABSTRACT

Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Catalase/pharmacology , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Catalase/metabolism , Cell Line, Tumor , Cell Membrane Permeability , Cell Survival/drug effects , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Female , Gefitinib , Gene Expression Regulation, Neoplastic/drug effects , Humans , Phosphorylation , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
14.
Res Sq ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37162954

ABSTRACT

Venetoclax (VEN), in combination with low dose cytarabine (AraC) or a hypomethylating agent, is FDA approved to treat acute myeloid leukemia (AML) in patients who are over the age of 75 or cannot tolerate standard chemotherapy. Despite high response rates to these combination therapies, most patients succumb to the disease due to relapse and/or drug resistance, providing an unmet clinical need for novel therapies to improve AML patient survival. ME-344 is a potent isoflavone with demonstrated inhibitory activity toward oxidative phosphorylation (OXPHOS) and clinical activity in solid tumors. Given that OXPHOS inhibition enhances VEN antileukemic activity against AML, we hypothesized that ME-344 could enhance the anti-AML activity of VEN. Here we report that ME-344 synergized with VEN to target AML cell lines and primary patient samples while sparing normal hematopoietic cells. Cooperative suppression of OXPHOS was detected in a subset of AML cell lines and primary patient samples. Metabolomics analysis revealed a significant reduction of purine biosynthesis metabolites by ME-344. Further, lometrexol, an inhibitor of purine biosynthesis, synergistically enhanced VEN-induced apoptosis in AML cell lines. Interestingly, AML cells with acquired resistance to AraC showed significantly increased purine biosynthesis metabolites and sensitivities to ME-344. Furthermore, synergy between ME-344 and VEN was preserved in these AraC-resistant AML cells. These results translated into significantly prolonged survival upon combination of ME-344 and VEN in NSGS mice bearing parental or AraC-resistant MV4-11 leukemia. This study demonstrates that ME-344 enhances VEN antileukemic activity against preclinical models of AML by suppressing OXPHOS and/or purine biosynthesis.

15.
J Cell Physiol ; 227(4): 1604-9, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21678412

ABSTRACT

Breast cancer tumorigenesis is accompanied by increased levels of extracellular proteases that are capable of remodeling the extracellular matrix as well as cleaving and activating growth factors and signaling receptors that are critically involved in neoplastic progression. Multiple studies implicate the membrane anchored serine protease matriptase (also known as MT-SP1 and epithin) in breast cancer. The pro-form of the GPI-anchored serine protease prostasin has recently been identified as a physiological substrate of matriptase and the two proteases are co-expressed in multiple healthy tissues. In this study, the inter-relationship between the two membrane-anchored serine proteases in breast cancer was investigated using breast cancer cell lines and breast cancer patient samples to delineate the association between matriptase and prostasin. We used Western blotting to determine the expression of matriptase and prostasin proteins in a panel of breast cancer cell lines and immunohistochemistry to assess the expression in serial sections from breast cancer tissue arrays. We demonstrate that the expression of matriptase and prostasin is closely correlated in breast cancer cell lines as well as in breast cancer tissue samples. Furthermore, matriptase and prostasin display a near identical spatial expression pattern in the epithelial compartment of breast cancer tissue. These data suggest that the matriptase-prostasin cascade might play a critical role in breast cancer.


Subject(s)
Breast Neoplasms/enzymology , Serine Endopeptidases/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/enzymology , Carcinoma, Ductal, Breast/pathology , Cell Line, Tumor , Disease Progression , Epithelium/enzymology , Epithelium/pathology , Female , Gene Knockdown Techniques , Humans , Immunohistochemistry , RNA, Small Interfering/genetics , Serine Endopeptidases/genetics , Substrate Specificity , Tissue Distribution
16.
Breast Cancer Res ; 14(4): R104, 2012 Jul 12.
Article in English | MEDLINE | ID: mdl-22788954

ABSTRACT

INTRODUCTION: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown clinical efficacy in lung, colon, and pancreatic cancers. In lung cancer, resistance to EGFR TKIs correlates with amplification of the hepatocyte growth factor (HGF) receptor tyrosine kinase Met. Breast cancers do not respond to EGFR TKIs, even though EGFR is overexpressed. This intrinsic resistance to EGFR TKIs in breast cancer does not correlate with Met amplification. In several tissue monoculture models of human breast cancer, Met, although expressed, is not phosphorylated, suggesting a requirement for a paracrine-produced ligand. In fact, HGF, the ligand for Met, is not expressed in epithelial cells but is secreted by fibroblasts in the tumor stroma. We have identified a number of breast cancer cell lines that are sensitive to EGFR TKIs. This sensitivity is in conflict with the observed clinical resistance to EGFR TKIs in breast cancers. Here we demonstrate that fibroblast secretion of HGF activates Met and leads to EGFR/Met crosstalk and resistance to EGFR TKIs in triple-negative breast cancer (TNBC). METHODS: The SUM102 and SUM149 TNBC cell lines were used in this study. Recombinant HGF as well as conditioned media from fibroblasts expressing HGF were used as sources for Met activation. Furthermore, we co-cultured HGF-secreting fibroblasts with Met-expressing cancer cells to mimic the paracrine HGF/Met pathway, which is active in the tumor microenvironment. Cell growth, survival, and transformation were measured by cell counting, clonogenic and MTS assays, and soft agar colony formation, respectively. Student's t test was used for all statistical analysis. RESULTS: Here we demonstrate that treatment of breast cancer cells sensitive to EGFR TKIs with recombinant HGF confers a resistance to EGFR TKIs. Interestingly, knocking down EGFR abrogated HGF-mediated cell survival, suggesting a crosstalk between EGFR and Met. HGF is secreted as a single-chain pro-form, which has to be proteolytically cleaved in order to activate Met. To determine whether the proteases required to activate pro-HGF were present in the breast cancer cells, we utilized a fibroblast cell line expressing pro-HGF (RMF-HGF). Addition of pro-HGF-secreting conditioned fibroblast media to TNBC cells as well as co-culturing of TNBC cells with RMF-HGF fibroblasts resulted in robust phosphorylation of Met and stimulated proliferation in the presence of an EGFR TKI. CONCLUSIONS: Taken together, these data suggest a role for Met in clinical resistance to EGFR TKIs in breast cancer through EGFR/Met crosstalk mediated by tumor-stromal interactions.


Subject(s)
Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Fibroblasts/metabolism , Hepatocyte Growth Factor/metabolism , Paracrine Communication , Protein Kinase Inhibitors/pharmacology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Transformation, Neoplastic , Coculture Techniques , Culture Media, Conditioned/pharmacology , ErbB Receptors/genetics , Gefitinib , Gene Expression , Hepatocyte Growth Factor/pharmacology , Humans , Phosphorylation , Proto-Oncogene Proteins c-met/metabolism , Quinazolines/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
17.
J Cell Physiol ; 226(9): 2316-28, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21660955

ABSTRACT

Epidermal growth factor receptor (EGFR) is overexpressed in many cancer types including ~30% of breast cancers. Several small molecule tyrosine kinase inhibitors (TKIs) targeting EGFR have shown clinical efficacy in lung and colon cancers, but no benefit has been noted in breast cancer. Thirteen EGFR expressing breast cancer cell lines were analyzed for response to EGFR TKIs. Seven were found to be EGFR TKI resistant; while shRNA knockdown of EGFR determined that four of these cell lines retained the requirement of EGFR protein expression for growth. Interestingly, EGFR localized to plasma membrane lipid rafts in all four of these EGFR TKI-resistant cell lines, as determined by biochemical raft isolation and immunofluorescence. When lipid rafts were depleted of cholesterol using lovastatin, all four cell lines were sensitized to EGFR TKIs. In fact, the effects of the cholesterol biosynthesis inhibitors and gefitinib were synergistic. While gefitinib effectively abrogated phosphorylation of Akt- and mitogen-activated protein kinase in an EGFR TKI-sensitive cell line, phosphorylation of Akt persisted in two EGFR TKI-resistant cell lines, however, this phosphorylation was abrogated by lovastatin treatment. Thus, we have shown that lipid raft localization of EGFR correlates with resistance to EGFR TKI-induced growth inhibition and pharmacological depletion of cholesterol from lipid rafts decreases this resistance in breast cancer cell lines. Furthermore, we have presented evidence to suggest that when EGFR localizes to lipid rafts, these rafts provide a platform to facilitate activation of Akt signaling in the absence of EGFR kinase activity.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/enzymology , ErbB Receptors/antagonists & inhibitors , Membrane Microdomains/enzymology , Protein Kinase Inhibitors/pharmacology , Quinazolines/therapeutic use , Atorvastatin , Benzylamines/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cholesterol/metabolism , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , ErbB Receptors/metabolism , Female , Gefitinib , Heptanoic Acids/pharmacology , Humans , Lovastatin/pharmacology , Membrane Microdomains/drug effects , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Pyrroles/pharmacology , Quinazolines/pharmacology , Thiophenes/pharmacology , beta-Cyclodextrins/pharmacology
18.
Blood ; 114(13): 2744-52, 2009 Sep 24.
Article in English | MEDLINE | ID: mdl-19638627

ABSTRACT

RUNX1 (AML1) encodes the core binding factor alpha subunit of a heterodimeric transcription factor complex which plays critical roles in normal hematopoiesis. Translocations or down-regulation of RUNX1 have been linked to favorable clinical outcomes in acute leukemias, suggesting that RUNX1 may also play critical roles in chemotherapy responses in acute leukemias; however, the molecular mechanisms remain unclear. The median level of RUNX1b transcripts in Down syndrome (DS) children with acute megakaryocytic leukemia (AMkL) were 4.4-fold (P < .001) lower than that in non-DS AMkL cases. Short hairpin RNA knockdown of RUNX1 in a non-DS AMkL cell line, Meg-01, resulted in significantly increased sensitivity to cytosine arabinoside, accompanied by significantly decreased expression of PIK3CD, which encodes the delta catalytic subunit of the survival kinase, phosphoinositide 3 (PI3)-kinase. Transcriptional regulation of PIK3CD by RUNX1 was further confirmed by chromatin immunoprecipitation and promoter reporter gene assays. Further, a PI3-kinase inhibitor, LY294002, and cytosine arabinoside synergized in antileukemia effects on Meg-01 and primary pediatric AMkL cells. Our results suggest that RUNX1 may play a critical role in chemotherapy response in AMkL by regulating the PI3-kinase/Akt pathway. Thus, the treatment of AMkL may be improved by integrating PI3-kinase or Akt inhibitors into the chemotherapy of this disease.


Subject(s)
Core Binding Factor Alpha 2 Subunit/physiology , Drug Resistance, Neoplasm/genetics , Leukemia, Megakaryoblastic, Acute/genetics , Oncogene Protein v-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Child , Class I Phosphatidylinositol 3-Kinases , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 2 Subunit/genetics , Cytarabine/pharmacology , Drug Resistance, Neoplasm/drug effects , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Leukemic , Humans , K562 Cells , Leukemia, Megakaryoblastic, Acute/enzymology , Leukemia, Megakaryoblastic, Acute/metabolism , Oligonucleotide Array Sequence Analysis , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/physiology , RNA, Small Interfering/pharmacology , Signal Transduction/genetics , Tumor Cells, Cultured
19.
Cancer Med ; 10(10): 3373-3387, 2021 05.
Article in English | MEDLINE | ID: mdl-33932119

ABSTRACT

OBJECTIVES: Treatment of both platinum resistant high grade (HG) and low-grade (LG) ovarian cancer (OVCA) poses significant challenges as neither respond well to conventional chemotherapy leading to morbidity and mortality. Identification of novel agents that can overcome chemoresistance is therefore critical. Previously, we have demonstrated that OVCA has basal upregulated unfolded protein response (UPR) and that targeting cellular processes leading to further and persistent upregulation of UPR leads to cell death. ONC201 is an orally bioavailable Dopamine Receptor D2 inhibitor demonstrating anticancer activity and was found to induce UPR. Given its unique properties, we hypothesized that ONC201 would overcome platinum resistance in OVCA. METHODS: Cisplatin sensitive and resistant HG OVCA and two primary LG OVCA cell lines were studied. Cell viability was determined using MTT assay. Cell migration was studied using wound healing assay. Apoptosis and mitochondrial membrane potential were investigated using flow cytometry. Analysis of pathway inhibition was performed by Western Blot. mRNA expression of UPR related genes were measured by qPCR. In vivo studies were completed utilizing axillary xenograft models. Co-testing with conventional chemotherapy was performed to study synergy. RESULTS: ONC201 significantly inhibited cell viability and migration in a dose dependent manner with IC50's from 1-20 µM for both cisplatin sensitive and resistant HG and LG-OVCA cell lines. ONC201 lead to upregulation of the pro-apoptotic arm of the UPR, specifically ATF-4/CHOP/ATF3 and increased the intrinsic apoptosispathway. The compensatory, pro-survival PI3K/AKT/mTOR pathway was downregulated. In vivo, weekly dosing of single agent ONC201 decreased xenograft tumor size by ~50% compared to vehicle. ONC201 also demonstrated significant synergy with paclitaxel in a highly platinum resistant OVCA cell-line (OV433). CONCLUSIONS: Our findings demonstrate that ONC201 can effectively overcome chemoresistance in OVCA cells by blocking pro-survival pathways and inducing the apoptotic arm of the UPR. This is a promising, orallybioavailable therapeutic agent to consider in clinical trials for patients with both HG and LG OVCA.


Subject(s)
Carcinoma, Ovarian Epithelial/drug therapy , Cell Death/drug effects , Imidazoles/pharmacology , Organoplatinum Compounds/pharmacology , Ovarian Neoplasms/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Unfolded Protein Response/drug effects , Antineoplastic Agents/pharmacology , Carcinoma, Ovarian Epithelial/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dopamine D2 Receptor Antagonists/pharmacology , Drug Resistance, Neoplasm/drug effects , Female , Humans , Receptors, Dopamine D2/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
20.
PLoS One ; 16(5): e0252314, 2021.
Article in English | MEDLINE | ID: mdl-34048471

ABSTRACT

Breast ductal carcinoma in situ (DCIS) is a non-obligate precursor of invasive ductal carcinoma (IDC). It is still unclear which DCIS will become invasive and which will remain indolent. Patients often receive surgery and radiotherapy, but this early intervention has not produced substantial decreases in late-stage disease. Sprouty proteins are important regulators of ERK/MAPK signaling and have been studied in various cancers. We hypothesized that Sprouty4 is an endogenous inhibitor of ERK/MAPK signaling and that its loss/reduced expression is a mechanism by which DCIS lesions progress toward IDC, including triple-negative disease. Using immunohistochemistry, we found reduced Sprouty4 expression in IDC patient samples compared to DCIS, and that ERK/MAPK phosphorylation had an inverse relationship to Sprouty4 expression. These observations were reproduced using a 3D culture model of disease progression. Knockdown of Sprouty4 in MCF10.DCIS cells increased ERK/MAPK phosphorylation as well as their invasive capability, while overexpression of Sprouty4 in MCF10.CA1d IDC cells reduced ERK/MAPK phosphorylation, invasion, and the aggressive phenotype exhibited by these cells. Immunofluorescence experiments revealed reorganization of the actin cytoskeleton and relocation of E-cadherin back to the cell surface, consistent with the restoration of adherens junctions. To determine whether these effects were due to changes in ERK/MAPK signaling, MEK1/2 was pharmacologically inhibited in IDC cells. Nanomolar concentrations of MEK162/binimetinib restored an epithelial-like phenotype and reduced pericellular proteolysis, similar to Sprouty4 overexpression. From these data we conclude that Sprouty4 acts to control ERK/MAPK signaling in DCIS, thus limiting the progression of these premalignant breast lesions.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Intraductal, Noninfiltrating/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nerve Tissue Proteins/metabolism , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Intraductal, Noninfiltrating/genetics , Cell Line, Tumor , Cells, Cultured , Female , Humans , Immunoblotting , Immunohistochemistry , Intracellular Signaling Peptides and Proteins/genetics , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 3/genetics , Nerve Tissue Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL