ABSTRACT
Genetic robustness, or the ability of an organism to maintain fitness in the presence of harmful mutations, can be achieved via protein feedback loops. Previous work has suggested that organisms may also respond to mutations by transcriptional adaptation, a process by which related gene(s) are upregulated independently of protein feedback loops. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analysing several models of transcriptional adaptation in zebrafish and mouse, we uncover a requirement for mutant mRNA degradation. Alleles that fail to transcribe the mutated gene do not exhibit transcriptional adaptation, and these alleles give rise to more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis in alleles displaying mutant mRNA decay reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene's mRNA, suggesting a sequence-dependent mechanism. These findings have implications for our understanding of disease-causing mutations, and will help in the design of mutant alleles with minimal transcriptional adaptation-derived compensation.
Subject(s)
Adaptation, Physiological/genetics , Mutation , RNA Stability/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic/genetics , Up-Regulation/genetics , Alleles , Animals , Epigenesis, Genetic/genetics , Histones/metabolism , Mice , Zebrafish/geneticsABSTRACT
Physical forces are important participants in the cellular dynamics that shape developing organs. During heart formation, for example, contractility and blood flow generate biomechanical cues that influence patterns of cell behavior. Here, we address the interplay between function and form during the assembly of the cardiac outflow tract (OFT), a crucial connection between the heart and vasculature that develops while circulation is under way. In zebrafish, we find that the OFT expands via accrual of both endocardial and myocardial cells. However, when cardiac function is disrupted, OFT endocardial growth ceases, accompanied by reduced proliferation and reduced addition of cells from adjacent vessels. The flow-responsive TGFß receptor Acvrl1 is required for addition of endocardial cells, but not for their proliferation, indicating distinct modes of function-dependent regulation for each of these essential cell behaviors. Together, our results indicate that cardiac function modulates OFT morphogenesis by triggering endocardial cell accumulation that induces OFT lumen expansion and shapes OFT dimensions. Moreover, these morphogenetic mechanisms provide new perspectives regarding the potential causes of cardiac birth defects.
Subject(s)
Endocardium/metabolism , Heart/physiology , Zebrafish/metabolism , Activin Receptors/antagonists & inhibitors , Activin Receptors/genetics , Activin Receptors/metabolism , Animals , Animals, Genetically Modified/growth & development , Animals, Genetically Modified/metabolism , Cell Proliferation , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Endocardium/cytology , Heart/anatomy & histology , Heart/growth & development , Morpholinos/metabolism , Troponin T/antagonists & inhibitors , Troponin T/genetics , Troponin T/metabolism , Zebrafish/growth & development , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolismABSTRACT
A dense local vascular network is crucial for pancreatic endocrine cells to sense metabolites and secrete hormones, and understanding the interactions between the vasculature and the islets may allow for therapeutic modulation in disease conditions. Using live imaging in two models of vascular disruption in zebrafish, we identified two distinct roles for the pancreatic vasculature. At larval stages, expression of a dominant negative version of Vegfaa (dnVegfaa) in ß-cells led to vascular and endocrine cell disruption with a minor impairment in ß-cell function. In contrast, expression of a soluble isoform of Vegf receptor 1 (sFlt1) in ß-cells blocked the formation of the pancreatic vasculature and drastically stunted glucose response, although islet architecture was not affected. Notably, these effects of dnVegfaa or sFlt1 were not observed in animals lacking vegfaa, vegfab, kdrl, kdr or flt1 function, indicating that they interfere with multiple ligands and/or receptors. In adults, disrupted islet architecture persisted in dnVegfaa-expressing animals, whereas sFlt1-expressing animals displayed large sheets of ß-cells along their pancreatic ducts, accompanied by impaired glucose tolerance in both models. Thus, our study reveals novel roles for the vasculature in patterning and function of the islet.
Subject(s)
Islets of Langerhans/cytology , Pancreas/blood supply , Animals , Blood Glucose/analysis , Gene Expression Regulation, Developmental , Glucose/metabolism , Glucose Tolerance Test , Green Fluorescent Proteins/metabolism , Ligands , Microscopy, Fluorescence , Mutation , Pancreas/embryology , Transgenes , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Zebrafish , Zebrafish Proteins/metabolismABSTRACT
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Subject(s)
Body Patterning , Gene Expression Regulation, Developmental , Neural Tube , Signal Transduction , Neural Tube/embryology , Neural Tube/metabolism , Neural Tube/cytology , Animals , Body Patterning/genetics , Humans , Gene Regulatory Networks , Spinal Cord/embryology , Spinal Cord/cytology , Spinal Cord/metabolism , Cell Differentiation , Cell MovementABSTRACT
Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.
Subject(s)
Early Growth Response Protein 3 , Heart Valves , Morphogenesis , Zebrafish Proteins , Zebrafish , Animals , Heart Valves/metabolism , Heart Valves/embryology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Morphogenesis/genetics , Humans , Early Growth Response Protein 3/metabolism , Early Growth Response Protein 3/genetics , Gene Expression Regulation, Developmental , Endothelial Cells/metabolism , Mechanotransduction, Cellular , SwineABSTRACT
The epicardium, the outermost layer of the heart, is an important regulator of cardiac regeneration. However, a detailed understanding of the crosstalk between the epicardium and myocardium during development requires further investigation. Here, we generated three models of epicardial impairment in zebrafish by mutating the transcription factor genes tcf21 and wt1a, and ablating tcf21+ epicardial cells. Notably, all three epicardial impairment models exhibited smaller ventricles. We identified the initial cause of this phenotype as defective cardiomyocyte growth, resulting in reduced cell surface and volume. This failure of cardiomyocyte growth was followed by decreased proliferation and increased abluminal extrusion. By temporally manipulating its ablation, we show that the epicardium is required to support cardiomyocyte growth mainly during early cardiac morphogenesis. By transcriptomic profiling of sorted epicardial cells, we identified reduced expression of FGF and VEGF ligand genes in tcf21-/- hearts, and pharmacological inhibition of these signaling pathways in wild type partially recapitulated the ventricular growth defects. Taken together, these data reveal distinct roles of the epicardium during cardiac morphogenesis and signaling pathways underlying epicardial-myocardial crosstalk.
Subject(s)
Myocytes, Cardiac , Zebrafish , Animals , Zebrafish/metabolism , Myocytes, Cardiac/metabolism , Ligands , Vascular Endothelial Growth Factor A/metabolism , Pericardium/metabolism , Organogenesis/genetics , Heart/physiology , Myocardium/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , WT1 Proteins/genetics , WT1 Proteins/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolismABSTRACT
AIMS: Mammalian models have been instrumental in investigating adult heart function and human disease. However, electrophysiological differences with human hearts and high costs motivate the need for non-mammalian models. The zebrafish is a well-established genetic model to study cardiovascular development and function; however, analysis of cardiovascular phenotypes in adult specimens is particularly challenging as they are opaque. METHODS AND RESULTS: Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging, and micro-computed tomography to identify and analyse cardiovascular phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiovascular defects that were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between haemodynamic defects and structural alterations of the heart, as observed clinically. CONCLUSION: We report a new, comprehensive, and sensitive platform to identify otherwise indiscernible cardiovascular phenotypes in adult zebrafish.
Subject(s)
Cardiovascular System , Zebrafish , Animals , Echocardiography , Heart , Humans , Mammals , X-Ray Microtomography , Zebrafish/geneticsABSTRACT
Cardiac valve disease can lead to severe cardiac dysfunction and is thus a frequent cause of morbidity and mortality. Its main treatment is valve replacement, which is currently greatly limited by the poor recellularization and tissue formation potential of the implanted valves. As we still lack suitable animal models to identify modulators of these processes, here we used adult zebrafish and found that, upon valve decellularization, they initiate a rapid regenerative program that leads to the formation of new functional valves. After injury, endothelial and kidney marrow-derived cells undergo cell cycle re-entry and differentiate into new extracellular matrix-secreting valve cells. The TGF-ß signaling pathway promotes the regenerative process by enhancing progenitor cell proliferation as well as valve cell differentiation. These findings reveal a key role for TGF-ß signaling in cardiac valve regeneration and establish the zebrafish as a model to identify and test factors promoting cardiac valve recellularization and growth.