Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biochim Biophys Acta ; 1838(10): 2646-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25017801

ABSTRACT

Cationic liposomes have been intensively studied both in basic and applied research because of their promising potential as non-viral molecular vehicles. This work was aimed to gain more information on the interactions between the plasmamembrane and liposomes formed by a natural phospholipid and a cationic surfactant of the gemini family. The present work was conducted with the synergistic use of diverse experimental approaches: electro-rotation measurements, atomic force microscopy, ζ-potential measurements, laser scanning confocal microscopy and biomolecular/cellular techniques. Electro-rotation measurements pointed out that the interaction of cationic liposomes with the cell membrane alters significantly its dielectric and geometric parameters. This alteration, being accompanied by significant changes of the membrane surface roughness as measured by atomic force microscopy, suggests that the interaction with the liposomes causes locally substantial modifications to the structure and morphology of the cell membrane. However, the results of electrophoretic mobility (ζ-potential) experiments show that upon the interaction the electric charge exposed on the cell surface does not vary significantly, pointing out that the simple adhesion on the cell surface of the cationic liposomes or their fusion with the membrane is to be ruled out. As a matter of fact, confocal microscopy images directly demonstrated the penetration of the liposomes inside the cell and their diffusion within the cytoplasm. Electro-rotation experiments performed in the presence of endocytosis inhibitors suggest that the internalization is mediated by, at least, one specific pathway. Noteworthy, the liposome uptake by the cell does not cause a significant biological damage.


Subject(s)
Cell Membrane/chemistry , Dimyristoylphosphatidylcholine/chemistry , Liposomes/chemistry , Membrane Fusion , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Animals , Cell Line , Cell Membrane/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Mice
2.
Biochim Biophys Acta ; 1828(2): 352-6, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23107760

ABSTRACT

The electrorotation technique was utilized to investigate the interactions between a mouse fibroblast cell line and zwitterionic liposomes formed by a natural phospholipid or cationic liposomes formulated with the same phospholipid and a cationic gemini surfactant. The application of this technique allowed an accurate characterization of the passive dielectric behavior of the plasma membrane by the determination of its specific capacitance and conductance. Changes of these parameters, upon interaction with the liposomes, are related to variations in the structure and or in the transport properties of the membrane. Cells were exposed to both types of liposomes for 1 or 4h. Electrorotation data show a dramatic reduction of the dielectric parameters of the plasma membrane after one hour treatment. After 4h of treatment the effects are still observed only in the case of the cationic liposomes. Surprisingly, these same treatments did not cause a relevant biological damage as assessed by standard viability tests. A detailed discussion to rationalize this phenomenon is presented.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Liposomes/chemistry , Animals , Biochemistry/methods , Cations , Cell Membrane/metabolism , Electrochemistry/methods , Fibroblasts/cytology , Mice , Models, Chemical , Phospholipids/chemistry , Solvents/chemistry , Structure-Activity Relationship , Surface-Active Agents/chemistry , Thermodynamics , Time Factors
3.
Curr Med Chem ; 16(2): 171-83, 2009.
Article in English | MEDLINE | ID: mdl-19149569

ABSTRACT

Lipid-based drug carriers, such as liposomes or drug/lipid complexes, have been extensively investigated in a large number of therapeutic protocols such as gene therapy, drug delivery, drug targeting and antibacterial treatments, in preclinical and clinical trials. Many formulations composed of natural and/or synthetic amphiphiles have been studied. Many synthetic lipids and surfactants have been designed and tested in order to improve liposomes and lipid complexes performances, such as fusion with cellular membrane, cellular uptake, target selectivity, transfection efficiency, low toxicity. Among these, gemini surfactants have been shown to be highly effective in delivering genetic material to cells, and also have been shown promising as synthetic additives in liposome formulations for drug delivery. The encouraging results obtained in gene therapy have given impulse to chemist creativity: an extensive selection of pH sensitive, sugar-, aminoacid- , and peptide-based gemini surfactants have been developed, many of which have shown good biological features. This review focuses on recent progress in gemini surfactant based formulations and their applications in different therapeutic protocols.


Subject(s)
Drug Carriers/chemistry , Genetic Therapy , Surface-Active Agents/chemistry , Alkanes/chemistry , Cardiolipins/chemistry , Cations/chemistry , Cholesterol/chemistry , Gene Transfer Techniques , Humans , Liposomes/chemistry , Polysaccharides/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemical synthesis
4.
Toxicol In Vitro ; 21(2): 230-4, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17064875

ABSTRACT

In this study we investigated the feasibility of mixed liposomes formed by dimyristoyl-sn-glycero-phosphatidylcholine (DMPC) and cationic gemini surfactant (Gemini 1) loaded with the chlorin m-tetrahydroxyphenylchlorin (m-THPC), in photodynamic therapy (PDT) for glioma. To this aim, an in vitro study was carried out by employing various human glioblastoma cell lines (A172, DBTRG, LN229, U118). The following liposomal formulations were tested: (i) DMPC and Gemini 1; (ii) m-THPC in DMPC in the absence or (iii) in the presence of Gemini 1 in the molar ratio 8:2; 7:3, and 6:4. The presence of Gemini 1 significantly increased the intracellular uptake of chlorin in all cell tested although with a different extent: LN229>U118>A172>DBTRG. The cytotoxicity of chlorin-loaded liposomes was then tested by cloning efficiency performed on different cultures, before and after irradiation with laser light at 652nm, at a Fluence Rate of 200mW/s for 100s, with a total Fluence of 20J/cm(-2). In the absence of irradiation, the different liposomal formulations induced a cytotoxicity in less than 30% of glioblastoma cells. On the contrary, irradiation induced total destruction of all cultures treated with m-THPC/DMPC+Gemini 1 in the ratios 8:2, or 7:3, or 6:4.


Subject(s)
Glioma/drug therapy , Mesoporphyrins/administration & dosage , Photochemotherapy , Photosensitizing Agents/administration & dosage , Cell Line, Tumor , Flow Cytometry , Humans , Liposomes
SELECTION OF CITATIONS
SEARCH DETAIL