Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955871

ABSTRACT

Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNAs. Previously, we showed that the Hfq C-terminal region forms an amyloid-like structure and that these fibrils interact with membranes. The immediate consequence of this interaction is a disruption of the membrane, but the effect on Hfq structure was unknown. To investigate details of the mechanism of interaction, the present work uses different in vitro biophysical approaches. We show that the Hfq C-terminal region influences membrane integrity and, conversely, that the membrane specifically affects the amyloid assembly. The reported effect of this bacterial master regulator on membrane integrity is discussed in light of the possible consequence on small regulatory RNA-based regulation.


Subject(s)
Escherichia coli Proteins , RNA, Bacterial , Amyloidogenic Proteins/metabolism , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , RNA, Bacterial/metabolism
2.
Cell Mol Life Sci ; 70(4): 729-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23007843

ABSTRACT

Links between cancer and stem cells have been proposed for many years. As the cancer stem cell (CSC) theory became widely studied, new methods were developed to culture and expand cancer cells with conserved determinants of "stemness". These cells show increased ability to grow in suspension as spheres in serum-free medium supplemented with growth factors and chemicals. The physiological relevance of this phenomenon in established cancer cell lines remains unclear. Cell lines have traditionally been used to explore tumor biology and serve as preclinical models for the screening of potential therapeutic agents. Here, we grew cell-forming spheres (CFS) from 25 established colorectal cancer cell lines. The molecular and cellular characteristics of CFS were compared to the bulk of tumor cells. CFS could be isolated from 72 % of the cell lines. Both CFS and their parental CRC cell lines were highly tumorigenic. Compared to their parental cells, they showed similar expression of putative CSC markers. The ability of CRC cells to grow as CFS was greatly enhanced by prior treatment with 5-fluorouracil. At the molecular level, CFS and parental CRC cells showed identical gene mutations and very similar genomic profiles, although microarray analysis revealed changes in CFS gene expression that were independent of DNA copy-number. We identified a CFS gene expression signature common to CFS from all CRC cell lines, which was predictive of disease relapse in CRC patients. In conclusion, CFS models derived from CRC cell lines possess interesting phenotypic features that may have clinical relevance for drug resistance and disease relapse.


Subject(s)
Colorectal Neoplasms/pathology , Spheroids, Cellular/pathology , Animals , Antimetabolites, Antineoplastic/pharmacology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Colon/drug effects , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Nude , Neoplasm Recurrence, Local , Rectum/drug effects , Rectum/metabolism , Rectum/pathology , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
3.
ACS Omega ; 5(30): 18842-18848, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32775886

ABSTRACT

Mesoporous materials represent a useful alternative for exploiting the effects of confinement on molecular trapping and catalysis. Their efficiency often depends on the interactions between the surface and the targeted molecules. One way to enhance these interactions is to adjust the hydrophobic/hydrophilic balance of the surface. In the case of mesoporous silica, the incorporation of organic groups is an efficient solution to adapt the material for specific applications. In this work, we have used the co-condensation method to control the hydrophobicity of mesoporous organosilica. The obtained materials are methyl- or phenyl-containing silica with a pore size between 3 and 5 nm. The surface chemistry control has shown the enhanced performance of the materials in two proof-of-concept (PoC) applications: lysozyme adsorption and supported catalysis. The lysozyme adsorption is observed to be over 3 times more efficient with the phenyl-functionalized material than MCM-41, due to π-π interactions. For the catalysis, copper(II) was immobilized on the organosilica surface. In this case, the presence of methyl groups significantly enhanced the product yield for the catalyzed synthesis of a triazole derivative; this was attributed to the enhanced hydrophobic surface-reactant interactions. It was also found that the materials have a higher water adsorption capacity and an improved resistance to hydrolysis. The modulation of water properties in confinement with hydrophobic surfaces, consistently with the water as tuneable solvent (WaTuSo) concept, is a crucial aspect in the efficiency of mesoporous materials for dedicated applications.

4.
Pathogens ; 7(4)2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30513780

ABSTRACT

Hfq is a pleiotropic regulator that has key roles in the control of genetic expression. The protein noticeably regulates translation efficiency and RNA decay in Gram-negative bacteria, due to the Hfq-mediated interaction between small regulatory noncoding RNA and mRNA. This property is of primary importance for bacterial adaptation and virulence. We have previously shown that the Hfq E. coli protein, and more precisely its C-terminal region (CTR), self-assembles into an amyloid-like structure. In the present work, we demonstrate that epigallocatechin gallate (EGCG), a major green tea polyphenol compound, targets the Hfq amyloid region and can be used as a potential antibacterial agent. We analysed the effect of this compound on Hfq amyloid fibril stability and show that EGCG both disrupts Hfq-CTR fibrils and inhibits their formation. We show that, even if EGCG affects other bacterial amyloids, it also specifically targets Hfq-CTR in vivo. Our results provide an alternative approach for the utilisation of EGCG that may be used synergistically with conventional antibiotics to block bacterial adaptation and treat infections.

5.
ChemMedChem ; 8(2): 289-96, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23281044

ABSTRACT

Aurora kinases play an essential role in mitotic progression and are potentially druggable targets in cancer therapy. We identified benzo[e]pyridoindoles (BePI) as powerful aurora kinase inhibitors. Their efficiency was demonstrated both in enzymatic inhibition studies and in cell culture assays. New BePI molecules were synthesized, and a structure-activity relationship study was conducted with the aim of improving the activity and solubility of the lead compound. Tetracyclic BePI derivatives are characterized by a particular curved shape, and the presence of an oxo group on the pyridine ring was found to be required for aurora kinase B inhibition. New hydrosoluble benzo[e]pyridoindolones were subsequently designed, and their efficacy was tested by a combination of cell-cycle analysis and time-lapse experiments in live cells. The most active BePI derivative, 13 b, inhibited the cell cycle, drove cells to polyploidy, and eventually induced apoptosis. It exhibited high antiproliferative activity in HeLa cells with an IC(50) value of 63 nM. Relative to compounds tested in clinical trials, this antiproliferative potency places 13 b among the top 10 aurora kinase inhibitors. Our results justify further in vivo evaluation in preclinical animal models of cancer.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Indoles/chemistry , Indoles/pharmacology , Neoplasms/enzymology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyridines/chemistry , Pyridines/pharmacology , Aurora Kinase B , Aurora Kinases , Cell Cycle/drug effects , HeLa Cells , Humans , Neoplasms/drug therapy , Protein Serine-Threonine Kinases/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL