Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Respir Cell Mol Biol ; 70(5): 379-391, 2024 May.
Article in English | MEDLINE | ID: mdl-38301257

ABSTRACT

GDF15 (growth differentiation factor 15) is a stress cytokine with several proposed roles, including support of stress erythropoiesis. Higher circulating GDF15 levels are prognostic of mortality during acute respiratory distress syndrome, but the cellular sources and downstream effects of GDF15 during pathogen-mediated lung injury are unclear. We quantified GDF15 in lower respiratory tract biospecimens and plasma from patients with acute respiratory failure. Publicly available data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reanalyzed. We used mouse models of hemorrhagic acute lung injury mediated by Pseudomonas aeruginosa exoproducts in wild-type mice and mice genetically deficient for Gdf15 or its putative receptor, Gfral. In critically ill humans, plasma levels of GDF15 correlated with lower respiratory tract levels and were higher in nonsurvivors. SARS-CoV-2 infection induced GDF15 expression in human lung epithelium, and lower respiratory tract GDF15 levels were higher in coronavirus disease (COVID-19) nonsurvivors. In mice, intratracheal P. aeruginosa type II secretion system exoproducts were sufficient to induce airspace and plasma release of GDF15, which was attenuated with epithelial-specific deletion of Gdf15. Mice with global Gdf15 deficiency had decreased airspace hemorrhage, an attenuated cytokine profile, and an altered lung transcriptional profile during injury induced by P. aeruginosa type II secretion system exoproducts, which was not recapitulated in mice deficient for Gfral. Airspace GDF15 reconstitution did not significantly modulate key lung cytokine levels but increased circulating erythrocyte counts. Lung epithelium releases GDF15 during pathogen injury, which is associated with plasma levels in humans and mice and can increase erythrocyte counts in mice, suggesting a novel lung-blood communication pathway.


Subject(s)
COVID-19 , Growth Differentiation Factor 15 , Lung , Pseudomonas aeruginosa , SARS-CoV-2 , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Humans , Mice , Lung/metabolism , Lung/pathology , Lung/virology , Male , Pseudomonas Infections/metabolism , Acute Lung Injury/pathology , Acute Lung Injury/metabolism , Female , Mice, Inbred C57BL , Mice, Knockout , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology , Disease Models, Animal
2.
Am J Respir Crit Care Med ; 208(10): 1026-1041, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37560988

ABSTRACT

Chronic obstructive pulmonary disease is a major health problem with a high prevalence, a rising incidence, and substantial morbidity and mortality. Its course is punctuated by acute episodes of increased respiratory symptoms, termed exacerbations of chronic obstructive pulmonary disease (ECOPD). ECOPD are important events in the natural history of the disease, as they are associated with lung function decline and prolonged negative effects on quality of life. The present-day therapy for ECOPD with short courses of antibiotics and steroids and escalation of bronchodilators has resulted in only modest improvements in outcomes. Recent data indicate that ECOPD are heterogeneous, raising the need to identify distinct etioendophenotypes, incorporating traits of the acute event and of patients who experience recurrent events, to develop novel and targeted therapies. These characterizations can provide a complete clinical picture, the severity of which will dictate acute pharmacological treatment, and may also indicate whether a change in maintenance therapy is needed to reduce the risk of future exacerbations. In this review we discuss the latest knowledge of ECOPD types on the basis of clinical presentation, etiology, natural history, frequency, severity, and biomarkers in an attempt to characterize these events.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Humans , Disease Progression , Anti-Bacterial Agents/therapeutic use , Phenotype
3.
Am J Respir Crit Care Med ; 208(4): 451-460, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37159910

ABSTRACT

Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Tobacco Products , Aged , Female , Humans , Male , Middle Aged , Forced Expiratory Volume , Lung , Quality of Life , Spirometry
4.
Thorax ; 78(4): 394-401, 2023 04.
Article in English | MEDLINE | ID: mdl-34853157

ABSTRACT

INTRODUCTION: Muscle loss is an important extrapulmonary manifestation of COPD. Dual energy X-ray absorptiometry (DXA) is the method of choice for body composition measurement but is not widely used for muscle mass evaluation. The pectoralis muscle area (PMA) is quantifiable by CT and predicts cross-sectional COPD-related morbidity. There are no studies that compare PMA with DXA measures or that evaluate longitudinal relationships between PMA and lung disease progression. METHODS: Participants from our longitudinal tobacco-exposed cohort had baseline and 6-year chest CT (n=259) and DXA (n=164) data. Emphysema was quantified by CT density histogram parenchymal scoring using the 15th percentile technique. Fat-free mass index (FFMI) and appendicular skeletal mass index (ASMI) were calculated from DXA measurements. Linear regression model relationships were reported using standardised coefficient (ß) with 95% CI. RESULTS: PMA was more strongly associated with DXA measures than with body mass index (BMI) in both cross-sectional (FFMI: ß=0.76 (95% CI 0.65 to 0.86), p<0.001; ASMI: ß=0.76 (95% CI 0.66 to 0.86), p<0.001; BMI: ß=0.36 (95% CI 0.25 to 0.47), p<0.001) and longitudinal (ΔFFMI: ß=0.43 (95% CI 0.28 to 0.57), p<0.001; ΔASMI: ß=0.42 (95% CI 0.27 to 0.57), p<0.001; ΔBMI: ß=0.34 (95% CI 0.22 to 0.46), p<0.001) models. Six-year change in PMA was associated with 6-year change in emphysema (ß=0.39 (95% CI 0.23 to 0.56), p<0.001) but not with 6-year change in airflow obstruction. CONCLUSIONS: PMA is an accessible measure of muscle mass and may serve as a useful clinical surrogate for assessing skeletal muscle loss in smokers. Decreased PMA correlated with emphysema progression but not lung function decline, suggesting a difference in the pathophysiology driving emphysema, airflow obstruction and comorbidity risk.


Subject(s)
Emphysema , Pulmonary Emphysema , Humans , Pectoralis Muscles , Nicotiana , Absorptiometry, Photon , Cross-Sectional Studies , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/etiology , Muscle, Skeletal/diagnostic imaging , Tomography, X-Ray Computed/methods
5.
Respir Res ; 24(1): 93, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36964552

ABSTRACT

Insomnia has been linked to adverse chronic obstructive pulmonary disease (COPD) outcomes including exacerbations, yet its impact on COPD-related healthcare utilization and costs is unknown. In this study, we investigated the associations between insomnia and healthcare utilization and costs in patients with COPD. A retrospective cohort of veterans with COPD were identified from national Veterans Affairs administration data for fiscal years 2012-2017. Insomnia was operationalized as having an insomnia diagnosis based on International Classification of Disease codes or having a prescription of > 30 doses of a sedative-hypnotic medication in a given fiscal year. The index date for insomnia was the first date when dual criteria for COPD and insomnia was met. The index date for those without insomnia was set as the COPD index date. Our primary outcomes were 1-year healthcare utilization and costs related to outpatient visits and hospitalizations after index date. COPD-related healthcare utilization variables included number of prescription fills of corticosteroids and/or antibiotics and outpatient visits and hospitalizations with a primary diagnosis of COPD. Out of 1,011,646 patients (96% men, mean age 68.4 years) diagnosed with COPD, 407,363 (38.8%) had insomnia. After adjustment for confounders, insomnia was associated with higher rates of outpatient visits, hospitalizations, and fills for corticosteroids and/or antibiotics, longer hospital length of stay, and $10,344 higher hospitalization costs in the 12 months after index date. These findings highlight the importance of insomnia as a potentially modifiable target for reducing the burden of COPD on patients and healthcare systems.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sleep Initiation and Maintenance Disorders , Male , Humans , Aged , Female , Retrospective Studies , Sleep Initiation and Maintenance Disorders/diagnosis , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/epidemiology , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , Delivery of Health Care , Adrenal Cortex Hormones/therapeutic use , Patient Acceptance of Health Care
6.
Respir Res ; 24(1): 224, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37737171

ABSTRACT

BACKGROUND: Muscle loss is prevalent in chronic obstructive pulmonary disease (COPD). Prior studies evaluating musculoskeletal dysfunction in COPD have focused on individuals with baseline low muscle mass. Currently, there is limited data evaluating clinical characteristics and outcomes associated with progression to incident low muscle mass in a tobacco-exposed cohort of individuals with baseline normal muscle mass. METHODS: We evaluated 246 participants from a single-center longitudinal tobacco-exposed cohort with serial spirometry, thoracic imaging, dual energy x-ray absorptiometry (DXA) measurements, walk testing, and plasma adipokine measurements. DXA-derived fat free mass index (FFMI) and appendicular skeletal mass index (ASMI) were used as surrogates for muscle mass. Participants with incident low muscle mass (LM) at follow-up were characterized by FFMI < 18.4 kg/m2 in males and < 15.4 kg/m2 in females and/or ASMI < 7.25 kg/m2 in males and < 5.67 kg/m2 in females. RESULTS: Twenty-five (10%) participants progressed to incident low muscle mass at follow-up. At baseline, the LM subgroup had greater active smoking prevalence (60% v. 38%, p = 0.04), lower FFMI (17.8 ± 1.7 kg/m2 v. 19.7 ± 2.9 kg/m2, p = 0.002), lower ASMI (7.3 ± 0.9 kg/m2 v. 8.2 ± 1.2 kg/m2, p = 0.0003), and lower plasma leptin (14.9 ± 10.1 ng/mL v. 24.0 ± 20.9 ng/mL, p = 0.04). At follow-up, the LM subgroup had higher COPD prevalence (68% v. 43%, p = 0.02), lower FEV1/FVC (0.63 ± 0.12 v. 0.69 ± 0.12, p = 0.02), lower %DLco (66.5 ± 15.9% v. 73.9 ± 16.8%, p = 0.03), and higher annual rate of FFMI decline (-0.17 kg/m2/year v. -0.04 kg/m2/year, p = 0.006). There were no differences in age, gender distribution, pack years smoking history, or walk distance. CONCLUSIONS: We identified a subgroup of tobacco-exposed individuals with normal baseline muscle mass who progressed to incident DXA-derived low muscle mass. This subgroup demonstrated synchronous lung disease and persistently low circulating leptin levels. Our study suggests the importance of assessing for muscle loss in conjunction with lung function decline when evaluating individuals with tobacco exposure.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Female , Male , Humans , Leptin , Smoking , Muscles
7.
Am J Epidemiol ; 191(7): 1153-1173, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35279711

ABSTRACT

The Collaborative Cohort of Cohorts for COVID-19 Research (C4R) is a national prospective study of adults comprising 14 established US prospective cohort studies. Starting as early as 1971, investigators in the C4R cohort studies have collected data on clinical and subclinical diseases and their risk factors, including behavior, cognition, biomarkers, and social determinants of health. C4R links this pre-coronavirus disease 2019 (COVID-19) phenotyping to information on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and acute and postacute COVID-related illness. C4R is largely population-based, has an age range of 18-108 years, and reflects the racial, ethnic, socioeconomic, and geographic diversity of the United States. C4R ascertains SARS-CoV-2 infection and COVID-19 illness using standardized questionnaires, ascertainment of COVID-related hospitalizations and deaths, and a SARS-CoV-2 serosurvey conducted via dried blood spots. Master protocols leverage existing robust retention rates for telephone and in-person examinations and high-quality event surveillance. Extensive prepandemic data minimize referral, survival, and recall bias. Data are harmonized with research-quality phenotyping unmatched by clinical and survey-based studies; these data will be pooled and shared widely to expedite collaboration and scientific findings. This resource will allow evaluation of risk and resilience factors for COVID-19 severity and outcomes, including postacute sequelae, and assessment of the social and behavioral impact of the pandemic on long-term health trajectories.


Subject(s)
COVID-19 , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , Cohort Studies , Humans , Middle Aged , Pandemics , Prospective Studies , SARS-CoV-2 , United States/epidemiology , Young Adult
8.
Respir Res ; 23(1): 311, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36376854

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a disease of accelerated aging and is associated with comorbid conditions including osteoporosis and sarcopenia. These extrapulmonary conditions are highly prevalent yet frequently underdiagnosed and overlooked by pulmonologists in COPD treatment and management. There is evidence supporting a role for bone-muscle crosstalk which may compound osteoporosis and sarcopenia risk in COPD. Chest CT is commonly utilized in COPD management, and we evaluated its utility to identify low bone mineral density (BMD) and reduced pectoralis muscle area (PMA) as surrogates for osteoporosis and sarcopenia. We then tested whether BMD and PMA were associated with morbidity and mortality in COPD. METHODS: BMD and PMA were analyzed from chest CT scans of 8468 COPDGene participants with COPD and controls (smoking and non-smoking). Multivariable regression models tested the relationship of BMD and PMA with measures of function (6-min walk distance (6MWD), handgrip strength) and disease severity (percent emphysema and lung function). Multivariable Cox proportional hazards models were used to evaluate the relationship between sex-specific quartiles of BMD and/or PMA derived from non-smoking controls with all-cause mortality. RESULTS: COPD subjects had significantly lower BMD and PMA compared with controls. Higher BMD and PMA were associated with increased physical function and less disease severity. Participants with the highest BMD and PMA quartiles had a significantly reduced mortality risk (36% and 46%) compared to the lowest quartiles. CONCLUSIONS: These findings highlight the potential for CT-derived BMD and PMA to characterize osteoporosis and sarcopenia using equipment available in the pulmonary setting.


Subject(s)
Osteoporosis , Pulmonary Disease, Chronic Obstructive , Sarcopenia , Humans , Male , Female , Sarcopenia/diagnostic imaging , Sarcopenia/epidemiology , Hand Strength , Osteoporosis/diagnostic imaging , Osteoporosis/epidemiology , Osteoporosis/complications , Tomography, X-Ray Computed/adverse effects , Morbidity , Muscles , Bone Density
9.
Thorax ; 76(4): 335-342, 2021 04.
Article in English | MEDLINE | ID: mdl-33479043

ABSTRACT

BACKGROUND: Pentraxin 3 (PTX3) influences innate immunity and inflammation, host defence, the complement cascade and angiogenesis. PTX3 expression in lung and blood of subjects with tobacco exposure, and its potential relationship with disease pattern and clinical outcome are poorly understood. METHODS: Using independent platforms and cohorts, we identified associations of PTX3 gene expression in lung tissue and plasma from current and former tobacco smokers (with and without chronic obstructive pulmonary disease, COPD) to disease phenotypes including quantitative CT determined emphysema, lung function, symptoms and survival. Two putative regulatory variants of the PTX3 gene were examined for association with COPD manifestations. The relationship between plasma PTX3 and hyaluronic acid levels was further examined. RESULTS: PTX3 gene expression in lung tissue was directly correlated with emphysema severity (p<0.0001). Circulating levels of PTX3 were inversely correlated with FEV1 (p=0.006), and positively associated with emphysema severity (p=0.004) and mortality (p=0.008). Two PTX3 gene regulatory variants were associated with a lower risk for emphysema and expiratory airflow obstruction, and plasma levels of PTX3 and hyaluronic acid were related. CONCLUSIONS: These data show strong and overlapping associations of lung and blood PTX3 levels, and PTX3 regulatory gene variants, with the severity of airflow obstruction, emphysema and mortality among smokers. These findings have potential implications regarding the pathogenesis of smoking-related lung diseases and warrant further exploration for the use of PTX3 as a predictive biomarker.


Subject(s)
C-Reactive Protein/metabolism , Pulmonary Emphysema/metabolism , Pulmonary Emphysema/mortality , Serum Amyloid P-Component/metabolism , Smokers , Adult , Aged , Biomarkers/metabolism , C-Reactive Protein/genetics , Female , Gene Expression , Humans , Hyaluronic Acid/metabolism , Male , Middle Aged , Phenotype , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Emphysema/physiopathology , Respiratory Function Tests , Serum Amyloid P-Component/genetics , Survival Rate , Tomography, X-Ray Computed
10.
Thorax ; 76(6): 554-560, 2021 06.
Article in English | MEDLINE | ID: mdl-33574123

ABSTRACT

OBJECTIVES: Muscle wasting is a recognised extra-pulmonary complication in chronic obstructive pulmonary disease and has been associated with increased risk of death. Acute respiratory exacerbations are associated with reduction of muscle function, but there is a paucity of data on their long-term effect. This study explores the relationship between acute respiratory exacerbations and long-term muscle loss using serial measurements of CT derived pectoralis muscle area (PMA). DESIGN AND SETTING: Participants were included from two prospective, longitudinal, observational, multicentre cohorts of ever-smokers with at least 10 pack-year history. PARTICIPANTS: The primary analysis included 1332 (of 2501) participants from Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) and 4384 (of 10 198) participants from Genetic Epidemiology of COPD (COPDGene) who had complete data from their baseline and follow-up visits. INTERVENTIONS: PMA was measured on chest CT scans at two timepoints. Self-reported exacerbation data were collected from participants in both studies through the use of periodic longitudinal surveys. MAIN OUTCOME MEASURES: Age-related and excess muscle loss over time. RESULTS: Age, sex, race and body mass index were associated with baseline PMA. Participants experienced age-related decline at the upper end of reported normal ranges. In ECLIPSE, the exacerbation rate over time was associated with an excess muscle area loss of 1.3% (95% CI 0.6 to 1.9, p<0.001) over 3 years and in COPDGene with an excess muscle area loss of 2.1% (95% CI 1.2 to 2.8, p<0.001) over 5 years. Excess muscle area decline was absent in 273 individuals who participated in pulmonary rehabilitation. CONCLUSIONS: Exacerbations are associated with accelerated skeletal muscle loss. Each annual exacerbation was associated with the equivalent of 6 months of age-expected decline in muscle mass. Ameliorating exacerbation-associated muscle loss represents an important therapeutic target.


Subject(s)
Muscular Atrophy/etiology , Population Surveillance , Pulmonary Disease, Chronic Obstructive/complications , Quality of Life , Smoking/adverse effects , Aged , Disease Progression , Female , Forced Expiratory Volume/physiology , Humans , Male , Middle Aged , Muscular Atrophy/physiopathology , Prognosis , Prospective Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/physiopathology , Severity of Illness Index , Tomography, X-Ray Computed
11.
Respir Res ; 22(1): 70, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33637087

ABSTRACT

BACKGROUND: Metformin is associated with improved respiratory outcomes in asthma; however, metformin in COPD and asthma-COPD overlap (ACO) remains unexplored. OBJECTIVE: To determine the association between metformin use and respiratory outcomes in COPD and ACO. STUDY DESIGN AND METHODS: Participants with COPD (FEV1/FVC < 0.70) in the Genetic Epidemiology of COPD study (COPDGene®) were categorized as ACO (n = 510), defined as concurrent physician-diagnosed asthma before age 40 years, or COPD alone (n = 3459). We estimated the association of baseline metformin use with (1) rate of total and severe respiratory exacerbations during follow-up, (2) cross-sectional St. George's Respiratory Questionnaire (SGRQ) score, six-minute walk distance (6MWD), and post-bronchodilator FEV1 percent predicted (FEV1pp), and (3) 5-year change in SGRQ, 6MWD, and FEV1pp. We also examined change in SGRQ, 6MWD and FEV1pp among participants who initiated metformin during follow-up (n = 108) compared to persistent metformin non-users (n = 2080). Analyses were adjusted for sociodemographic factors, medications, and comorbidities. RESULTS: Among participants with ACO, metformin use was associated with lower rate of total (adjusted incidence rate ratio [aIRR] 0.3; 95% confidence interval [95%CI] 0.11, 0.77) and severe exacerbations (aIRR 0.29; 95%CI 0.10, 0.89). Among participants with COPD alone, there was no association between metformin use with total (aIRR 0.98; 95%CI 0.62, 1.5) or severe exacerbations (aIRR 1.3; 95% CI 0.68, 2.4) (p-interaction < 0.05). Metformin use was associated with lower baseline SGRQ score (adjusted mean difference [aMD] - 2.7; 95%CI - 5.3, - 0.2) overall. Metformin initiation was associated with improved SGRQ score (aMD -10.0; 95% CI - 18.7, - 1.2) among participants with ACO but not COPD alone (p-interaction < 0.05). There was no association between metformin use and 6MWD or FEV1pp in any comparison. CONCLUSIONS: Metformin use was associated with fewer respiratory exacerbations and improved quality of life among individuals with ACO but not COPD alone. Results suggest a potential role for metformin in ACO which requires further prospective study. TRIAL REGISTRY: NCT00608764.


Subject(s)
Asthma/drug therapy , Asthma/epidemiology , Forced Expiratory Volume/drug effects , Metformin/therapeutic use , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/epidemiology , Adult , Aged , Asthma/physiopathology , Cohort Studies , Comorbidity , Cross-Sectional Studies , Female , Follow-Up Studies , Forced Expiratory Volume/physiology , Humans , Male , Metformin/pharmacology , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Respiratory Function Tests/methods , Retrospective Studies , Treatment Outcome
12.
Bioinformatics ; 35(7): 1204-1212, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30192904

ABSTRACT

MOTIVATION: Integration of data from different modalities is a necessary step for multi-scale data analysis in many fields, including biomedical research and systems biology. Directed graphical models offer an attractive tool for this problem because they can represent both the complex, multivariate probability distributions and the causal pathways influencing the system. Graphical models learned from biomedical data can be used for classification, biomarker selection and functional analysis, while revealing the underlying network structure and thus allowing for arbitrary likelihood queries over the data. RESULTS: In this paper, we present and test new methods for finding directed graphs over mixed data types (continuous and discrete variables). We used this new algorithm, CausalMGM, to identify variables directly linked to disease diagnosis and progression in various multi-modal datasets, including clinical datasets from chronic obstructive pulmonary disease (COPD). COPD is the third leading cause of death and a major cause of disability and thus determining the factors that cause longitudinal lung function decline is very important. Applied on a COPD dataset, mixed graphical models were able to confirm and extend previously described causal effects and provide new insights on the factors that potentially affect the longitudinal lung function decline of COPD patients. AVAILABILITY AND IMPLEMENTATION: The CausalMGM package is available on http://www.causalmgm.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Models, Biological , Pulmonary Disease, Chronic Obstructive , Algorithms , Humans , Prognosis , Pulmonary Disease, Chronic Obstructive/diagnosis , Systems Biology
13.
BMC Pulm Med ; 20(1): 123, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32366316

ABSTRACT

BACKGROUND: Previous studies have established a higher prevalence of vitamin D deficiency in patients with COPD, but the relationship between vitamin D levels and COPD exacerbations remains controversial. In addition, the effect of vitamin D levels on imaging characteristics remains mostly unexplored. Using cross-sectional and longitudinal follow up data from the COPDGene Study, we assessed the association between vitamin D levels on respiratory symptoms, exacerbations, and imaging characteristics. We hypothesized that vitamin D deficiency will be associated with worse respiratory-related outcomes. METHODS: Current and former smokers between ages 45-80 were enrolled the COPDGene Study. Subjects completed questionnaires, spirometry, six-minute walk test, and chest computed tomography scans. A subset of subjects had measurement of serum concentration of 25-hydroxyvitamin D (25(OH)D). Vitamin D deficiency was defined as serum concentration less than 20 ng/mL. Longitudinal follow up was conducted via a web-based or telephone questionnaire. RESULTS: Vitamin D levels were measured on 1544 current and former smokers, of which 981 subjects had sufficient vitamin D levels and 563 subjects had vitamin D deficiency. Subjects with vitamin D deficiency were younger with increased likelihood of being African American, being current smokers, having a lower percent predicted FEV1, and having COPD. Vitamin D deficiency was associated with worse quality of life, increased dyspnea, decreased exercise tolerance, and increased frequency of severe exacerbations. Vitamin D deficiency was also associated with increased segmental airway wall thickness on chest CT scans. CONCLUSION: Vitamin D deficiency was associated with increased respiratory symptoms, decreased functional status, increased frequency of severe exacerbations, as well as airway wall thickening on chest CT scans. Further research is needed to determine the potential impact of vitamin D supplementation to improve disease outcomes.


Subject(s)
Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/epidemiology , Smokers , Vitamin D Deficiency/epidemiology , Aged , Aged, 80 and over , Cross-Sectional Studies , Female , Humans , Linear Models , Male , Middle Aged , Multivariate Analysis , Prospective Studies , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/complications , Quality of Life , Respiratory Function Tests , Severity of Illness Index , Spirometry , Surveys and Questionnaires , United States/epidemiology , Vitamin D/analogs & derivatives , Vitamin D/blood , Vitamin D Deficiency/blood , Vitamin D Deficiency/complications , Walk Test
14.
Respir Res ; 20(1): 128, 2019 Jun 24.
Article in English | MEDLINE | ID: mdl-31234847

ABSTRACT

BACKGROUND: Elastin breakdown and the resultant loss of lung elastic recoil is a hallmark of pulmonary emphysema in susceptible individuals as a consequence of tobacco smoke exposure. Systemic alterations to the synthesis and degradation of elastin may be important to our understanding of disease phenotypes in chronic obstructive pulmonary disease. We investigated the association of skin elasticity with pulmonary emphysema, obstructive lung disease, and blood biomarkers of inflammation and tissue protease activity in tobacco-exposed individuals. METHODS: Two hundred and thirty-six Caucasian individuals were recruited into a sub-study of the University of Pittsburgh Specialized Center for Clinically Orientated Research in chronic obstructive pulmonary disease, a prospective cohort study of current and former smokers. The skin viscoelastic modulus (VE), a determinant of skin elasticity, was recorded from the volar forearm and facial wrinkling severity was determined using the Daniell scoring system. RESULTS: In a multiple regression analysis, reduced VE was significantly associated with cross-sectional measurement of airflow obstruction (FEV1/FVC) and emphysema quantified from computed tomography (CT) images, ß = 0.26, p = 0.001 and ß = 0.24, p = 0.001 respectively. In emphysema-susceptible individuals, elasticity-determined skin age was increased (median 4.6 years) compared to the chronological age of subjects without emphysema. Plasma biomarkers of inflammation (TNFR1, TNFR2, CRP, PTX3, and SAA) and matrix metalloproteinase activity (MMP1, TIMP1, TIMP2, and TIMP4) were inversely associated with skin elasticity. CONCLUSIONS: We report that an objective non-invasive determinant of skin elasticity is independently associated with measures of lung function, pulmonary emphysema, and biomarkers of inflammation and tissue proteolysis in tobacco-exposed individuals. Loss of skin elasticity is a novel observation that may link the common pathological processes that drive tissue elastolysis in the extracellular matrix of the skin and lung in emphysema-susceptible individuals.


Subject(s)
Inflammation Mediators/blood , Matrix Metalloproteinases/blood , Pulmonary Emphysema/blood , Skin Aging/pathology , Smokers , Tobacco Smoking/blood , Aged , Biomarkers/blood , Cohort Studies , Elasticity/physiology , Enzyme Activation/physiology , Female , Humans , Male , Prospective Studies , Pulmonary Emphysema/diagnosis , Single-Blind Method , Tobacco Smoking/adverse effects
15.
Curr HIV/AIDS Rep ; 16(4): 359-369, 2019 08.
Article in English | MEDLINE | ID: mdl-31256349

ABSTRACT

PURPOSE OF REVIEW: In the antiretroviral therapy era, people living with HIV (PLWH) are surviving to older ages. Chronic illnesses such as chronic obstructive pulmonary disease (COPD) occur more frequently. COPD is often described as a single entity, yet multiple manifestations may be considered phenotypes. HIV is an independent risk factor for certain COPD phenotypes, and mechanisms underlying pathogenesis of these phenotypes may differ and impact response to therapy. RECENT FINDINGS: Impaired diffusing capacity, airflow obstruction, and radiographic emphysema occur in PLWH and are associated with increased mortality. Age, sex, tobacco, and HIV-specific factors likely modulate the severity of disease. An altered lung microbiome and residual HIV in the lung may also influence phenotypes. COPD is prevalent in PLWH with multiple phenotypes contributing to the burden of disease. HIV-specific factors and the respiratory microbiome influence disease pathogenesis. As tobacco use remains a significant risk factor for COPD, smoking cessation must be emphasized for all PLWH.


Subject(s)
HIV Infections/pathology , Lung/physiopathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Emphysema/physiopathology , Aged , Female , HIV Infections/complications , Humans , Male , Middle Aged , Phenotype , Prevalence , Risk Factors , Smoking Cessation/methods , Tobacco Use/adverse effects
16.
Respiration ; 94(6): 501-509, 2017.
Article in English | MEDLINE | ID: mdl-28910816

ABSTRACT

BACKGROUND: Studies have demonstrated both positive and negative effects of obesity on clinical outcomes in chronic obstructive pulmonary disease (COPD). In other chronic diseases, fat location is differentially associated with disease outcomes; however, this relationship has not been well studied in COPD. OBJECTIVE: To determine if fat location explains the differential association of body mass index (BMI) with clinical outcome measures in smokers. METHODS: Baseline and 6-year chest computed tomography scans from 68 current and former smokers were used to quantify mediastinal and subcutaneous fat. The relationships of BMI, mediastinal fat, and subcutaneous fat with cross-sectional and 6-year changes in pulmonary function, incremental shuttle walk distance (ISWD), quantitative emphysema, and circulating interleukin-6 (IL-6) and C-reactive protein (CRP) levels were assessed using generalized linear models adjusted for clinically relevant covariates. RESULTS: Baseline subcutaneous fat was negatively associated with emphysema progression over 6 years (p < 0.01). BMI and mediastinal fat volume were inversely associated with baseline ISWD (p < 0.01 and p = 0.043, respectively) as well as 6-year change in ISWD (p = 0.020 and p = 0.028, respectively). IL-6 was directly associated with BMI and mediastinal fat (p < 0.01) and CRP was directly associated with BMI only (p = 0.033). CONCLUSIONS: Increased subcutaneous chest fat is associated with less emphysema progression over time in smokers, while increased mediastinal fat volume is associated with decreased walk distance and increased IL-6 levels. These findings suggest a complex interaction between fat, inflammation, and emphysema that should be considered when phenotyping patients with COPD and provide new evidence of an inverse association between emphysema progression and chest subcutaneous fat.


Subject(s)
Adiposity , Lung/physiopathology , Pulmonary Emphysema/physiopathology , Subcutaneous Fat/physiopathology , Aged , Biomarkers/blood , Body Mass Index , Cohort Studies , Disease Progression , Exercise Tolerance , Female , Humans , Male , Middle Aged , Respiratory Function Tests
17.
Am J Respir Crit Care Med ; 194(1): 38-47, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26771278

ABSTRACT

RATIONALE: Lower FEV1 is associated with increased prevalence of atherosclerosis; however, causal mechanisms remain elusive. OBJECTIVES: To determine if systemic endothelial dysfunction mediates the association between reduced FEV1 and increased atherosclerosis. METHODS: Brachial artery endothelial function, pulmonary function, coronary artery calcium, and carotid plaque were assessed in 231 Pittsburgh SCCOR (Specialized Centers for Clinically Oriented Research) study participants; peripheral arterial endothelial function, pulmonary function, and coronary artery calcium were assessed in 328 HeartSCORE (Heart Strategies Concentrating on Risk Evaluation) study participants. MEASUREMENTS AND MAIN RESULTS: Lower FEV1 was independently associated with increased atherosclerosis in both cohorts (per 25% lower % predicted FEV1: odds ratio [OR], 1.76; 95% confidence interval [CI], 1.30-2.40; P < 0.001 for carotid plaque in SCCOR participants) (per 25% lower % predicted FEV1: OR, 1.35; 95% CI, 1.02-1.77; P = 0.03 for coronary artery calcium in HeartSCORE participants). Similarly, reduced endothelial function was independently associated with increased atherosclerosis in both cohorts (per SD lower endothelial function: OR, 1.30; 95% CI, 1.01-1.67; P = 0.04 for carotid plaque in SCCOR participants) (per SD lower endothelial function: OR, 1.38; 95% CI, 1.09-1.76; P = 0.008 and OR, 1.41; 95% CI, 1.07-1.86; P = 0.01 for coronary artery calcium in SCCOR and HeartSCORE participants, respectively). However, there was no association between endothelial dysfunction and FEV1, FEV1/FVC, low-attenuation area/visual emphysema, and diffusing capacity in SCCOR participants, and between endothelial dysfunction and FEV1 or FEV1/FVC in HeartSCORE participants (all P > 0.05). Adjusting the association between FEV1 and atherosclerosis for endothelial dysfunction had no impact. CONCLUSIONS: Endothelial dysfunction does not mediate the association between airflow limitation and atherosclerosis. Instead, airflow limitation and endothelial dysfunction seem to be unrelated and mutually independent predictors of atherosclerosis.


Subject(s)
Airway Obstruction/complications , Airway Obstruction/physiopathology , Atherosclerosis/complications , Atherosclerosis/physiopathology , Endothelium, Vascular/physiopathology , Lung/physiopathology , Adult , Aged , Brachial Artery/physiopathology , Cohort Studies , Female , Forced Expiratory Volume/physiology , Humans , Male , Middle Aged , Odds Ratio , Risk Assessment , Risk Factors
18.
J Immunol ; 191(5): 2089-95, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23872052

ABSTRACT

We hypothesized B cells are involved in the pathogenesis of idiopathic pulmonary fibrosis (IPF), a progressive, restrictive lung disease that is refractory to glucocorticoids and other nonspecific therapies, and almost invariably lethal. Accordingly, we sought to identify clinically associated B cell-related abnormalities in these patients. Phenotypes of circulating B cells were characterized by flow cytometry. Intrapulmonary processes were evaluated by immunohistochemistry. Plasma B lymphocyte stimulating factor (BLyS) was assayed by ELISA. Circulating B cells of IPF subjects were more Ag differentiated, with greater plasmablast proportions (3.1 ± 0.8%) than in normal controls (1.3 ± 0.3%) (p < 0.03), and the extent of this differentiation correlated with IPF patient lung volumes (r = 0.44, p < 0.03). CD20(+) B cell aggregates, diffuse parenchymal and perivascular immune complexes, and complement depositions were all prevalent in IPF lungs, but much less prominent or absent in normal lungs. Plasma concentrations of BLyS, an obligate factor for B cell survival and differentiation, were significantly greater (p < 0.0001) in 110 IPF (2.05 ± 0.05 ng/ml) than among 53 normal (1.40 ± 0.04 ng/ml) and 90 chronic obstructive pulmonary disease subjects (1.59 ± 0.05 ng/ml). BLyS levels were uniquely correlated among IPF patients with pulmonary artery pressures (r = 0.58, p < 0.0001). The 25% of IPF subjects with the greatest BLyS values also had diminished 1-y survival (46 ± 11%), compared with those with lesser BLyS concentrations (81 ± 5%) (hazard ratio = 4.0, 95% confidence interval = 1.8-8.7, p = 0.0002). Abnormalities of B cells and BLyS are common in IPF patients, and highly associated with disease manifestations and patient outcomes. These findings have implications regarding IPF pathogenesis and illuminate the potential for novel treatment regimens that specifically target B cells in patients with this lung disease.


Subject(s)
B-Cell Activating Factor/blood , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Cell Differentiation , Idiopathic Pulmonary Fibrosis/immunology , Aged , Aged, 80 and over , Cell Differentiation/immunology , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Humans , Idiopathic Pulmonary Fibrosis/blood , Idiopathic Pulmonary Fibrosis/pathology , Immunohistochemistry , Male , Middle Aged
19.
BMC Bioinformatics ; 15: 346, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25371041

ABSTRACT

BACKGROUND: In modern biomedical research of complex diseases, a large number of demographic and clinical variables, herein called phenomic data, are often collected and missing values (MVs) are inevitable in the data collection process. Since many downstream statistical and bioinformatics methods require complete data matrix, imputation is a common and practical solution. In high-throughput experiments such as microarray experiments, continuous intensities are measured and many mature missing value imputation methods have been developed and widely applied. Numerous methods for missing data imputation of microarray data have been developed. Large phenomic data, however, contain continuous, nominal, binary and ordinal data types, which void application of most methods. Though several methods have been developed in the past few years, not a single complete guideline is proposed with respect to phenomic missing data imputation. RESULTS: In this paper, we investigated existing imputation methods for phenomic data, proposed a self-training selection (STS) scheme to select the best imputation method and provide a practical guideline for general applications. We introduced a novel concept of "imputability measure" (IM) to identify missing values that are fundamentally inadequate to impute. In addition, we also developed four variations of K-nearest-neighbor (KNN) methods and compared with two existing methods, multivariate imputation by chained equations (MICE) and missForest. The four variations are imputation by variables (KNN-V), by subjects (KNN-S), their weighted hybrid (KNN-H) and an adaptively weighted hybrid (KNN-A). We performed simulations and applied different imputation methods and the STS scheme to three lung disease phenomic datasets to evaluate the methods. An R package "phenomeImpute" is made publicly available. CONCLUSIONS: Simulations and applications to real datasets showed that MICE often did not perform well; KNN-A, KNN-H and random forest were among the top performers although no method universally performed the best. Imputation of missing values with low imputability measures increased imputation errors greatly and could potentially deteriorate downstream analyses. The STS scheme was accurate in selecting the optimal method by evaluating methods in a second layer of missingness simulation. All source files for the simulation and the real data analyses are available on the author's publication website.


Subject(s)
Epidemiologic Methods , Software , Algorithms , Cluster Analysis , Computational Biology , Computer Simulation , Datasets as Topic , Humans , Research Design
20.
Am J Respir Crit Care Med ; 187(7): 768-75, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23262513

ABSTRACT

RATIONALE: Diverse autoantibodies are present in most patients with idiopathic pulmonary fibrosis (IPF). We hypothesized that specific autoantibodies may associate with IPF manifestations. OBJECTIVES: To identify clinically relevant, antigen-specific immune responses in patients with IPF. METHODS: Autoantibodies were detected by immunoblots and ELISA. Intrapulmonary immune processes were evaluated by immunohistochemistry. Anti-heat shock protein 70 (HSP70) IgG was isolated from plasma by immunoaffinity. Flow cytometry was used for leukocyte functional studies. MEASUREMENTS AND MAIN RESULTS: HSP70 was identified as a potential IPF autoantigen in discovery assays. Anti-HSP70 IgG autoantibodies were detected by immunoblots in 3% of 60 control subjects versus 25% of a cross-sectional IPF cohort (n = 122) (P = 0.0004), one-half the patients with IPF who died (P = 0.008), and 70% of those with acute exacerbations (P = 0.0005). Anti-HSP70 autoantibodies in patients with IPF were significantly associated with HLA allele biases, greater subsequent FVC reductions (P = 0.0004), and lesser 1-year survival (40 ± 10% vs. 80 ± 5%; hazard ratio = 4.2; 95% confidence interval, 2.0-8.6; P < 0.0001). HSP70 protein, antigen-antibody complexes, and complement were prevalent in IPF lungs. HSP70 protein was an autoantigen for IPF CD4 T cells, inducing lymphocyte proliferation (P = 0.004) and IL-4 production (P = 0.01). IPF anti-HSP70 autoantibodies activated monocytes (P = 0.009) and increased monocyte IL-8 production (P = 0.049). ELISA confirmed the association between anti-HSP70 autoreactivity and IPF outcome. Anti-HSP70 autoantibodies were also found in patients with other interstitial lung diseases but were not associated with their clinical progression. CONCLUSIONS: Patients with IPF with anti-HSP70 autoantibodies have more near-term lung function deterioration and mortality. These findings suggest antigen-specific immunoassays could provide useful clinical information in individual patients with IPF and may have implications for understanding IPF progression.


Subject(s)
Antigen-Antibody Complex/immunology , Autoantibodies/blood , HSP70 Heat-Shock Proteins/immunology , Idiopathic Pulmonary Fibrosis/immunology , Immunoglobulin G/blood , Lung/immunology , Aged , Antigen-Antibody Complex/analysis , Autoantibodies/analysis , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunohistochemistry , Interleukin-4/immunology , Interleukin-8/immunology , Linear Models , Lung/pathology , Male , Prognosis , Proportional Hazards Models
SELECTION OF CITATIONS
SEARCH DETAIL