Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pharm Biomed Anal ; 227: 115256, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36764268

ABSTRACT

We recently described C18 fatty acid acylated peptides as a new class of potent long-lasting single-chain RXFP1 agonists that displayed relaxin-like activities in vivo. Early pharmacokinetics and toxicological studies of these stearic acid acylated peptides revealed a relevant oxidative metabolism occurring in dog and minipig, and also seen at a lower extent in monkey and rat. Mass spectrometry combined to NMR spectroscopy studies revealed that the oxidation occurred, unexpectedly, on the stearic acid chain at ω-1, ω-2 and ω-3 positions. Structure-metabolism relationship studies on acylated analogues with different fatty acids lengths (C15-C20) showed that the extent of oxidation was higher with longer chains. The oxidized metabolites could be generated in vitro using liver microsomes and engineered bacterial CYPs. These systems were correlating poorly with in vivo metabolism observed across species; however, the results suggest that this biotransformation pathway might be catalyzed by some unknown CYP enzymes.


Subject(s)
Cytochrome P-450 Enzyme System , Fatty Acids , Animals , Dogs , Rats , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids/metabolism , Metabolic Networks and Pathways , Microsomes, Liver/metabolism , Oxidation-Reduction , Stearic Acids , Swine , Swine, Miniature/metabolism , Haplorhini
2.
J Med Chem ; 59(15): 7066-74, 2016 08 11.
Article in English | MEDLINE | ID: mdl-27355974

ABSTRACT

The HGF/MET pathway is frequently activated in a variety of cancer types. Several selective small molecule inhibitors of the MET kinase are currently in clinical evaluation, in particular for NSCLC, liver, and gastric cancer patients. We report herein the discovery of a series of triazolopyridazines that are selective inhibitors of wild-type (WT) MET kinase and several clinically relevant mutants. We provide insight into their mode of binding and report unprecedented crystal structures of the Y1230H variant. A multiparametric chemical optimization approach allowed the identification of compound 12 (SAR125844) as a development candidate. In this chemical series, absence of CYP3A4 inhibition was obtained at the expense of satisfactory oral absorption. Compound 12, a promising parenteral agent for the treatment of MET-dependent cancers, promoted sustained target engagement at tolerated doses in a human xenograft tumor model. Preclinical pharmacokinetics conducted in several species were predictive for the observed pharmacokinetic behavior of 12 in cancer patients.


Subject(s)
Benzothiazoles/pharmacology , Benzothiazoles/pharmacokinetics , Drug Discovery , Neoplasms, Experimental/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Structure-Activity Relationship , Urea/administration & dosage , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology
3.
Mol Cancer Ther ; 14(2): 384-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25504634

ABSTRACT

Activation of the MET/HGF pathway is common in human cancer and is thought to promote tumor initiation, metastasis, angiogenesis, and resistance to diverse therapies. We report here the pharmacologic characterization of the triazolopyridazine derivative SAR125844, a potent and highly selective inhibitor of the MET receptor tyrosine kinase (RTK), for intravenous administration. SAR125844 displayed nanomolar activity against the wild-type kinase (IC50 value of 4.2 nmol/L) and the M1250T and Y1235D mutants. Broad biochemical profiling revealed that SAR125844 was highly selective for MET kinase. SAR125844 inhibits MET autophosphorylation in cell-based assays in the nanomolar range, and promotes low nanomolar proapoptotic and antiproliferative activities selectively in cell lines with MET gene amplification or pathway addiction. In two MET-amplified human gastric tumor xenograft models, SNU-5 and Hs 746T, intravenous treatment with SAR125844 leads to potent, dose- and time-dependent inhibition of the MET kinase and to significant impact on downstream PI3K/AKT and RAS/MAPK pathways. Long duration of MET kinase inhibition up to 7 days was achieved with a nanosuspension formulation of SAR125844. Daily or every-2-days intravenous treatment of SAR125844 promoted a dose-dependent tumor regression in MET-amplified human gastric cancer models at tolerated doses without treatment-related body weight loss. Our data demonstrated that SAR125844 is a potent and selective MET kinase inhibitor with a favorable preclinical toxicity profile, supporting its clinical development in patients with MET-amplified and MET pathway-addicted tumors.


Subject(s)
Azoles/pharmacology , Benzothiazoles/pharmacology , Gene Amplification/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology , Urea/analogs & derivatives , Adenosine Triphosphate/pharmacology , Administration, Intravenous , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Azoles/administration & dosage , Azoles/chemistry , Benzothiazoles/administration & dosage , Benzothiazoles/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , HEK293 Cells , Humans , Mice, SCID , Mutation/genetics , Phosphorylation/drug effects , Urea/administration & dosage , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL