Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Main subject
Language
Publication year range
1.
Phys Rev Lett ; 130(1): 011402, 2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36669226

ABSTRACT

We show that a generic relativistic membrane with in-plane pressure and surface density having the same sign is unstable with respect to a series of warping mode instabilities with high wave numbers. We also examine the criteria of instability for commonly studied exotic compact objects with membranes, such as gravastars, anti-de Sitter bubbles, and thin-shell wormholes. For example, a gravastar which satisfies the weak energy condition turns out to be dynamically unstable. A thin-layer black hole mimicker is stable only if it has positive pressure and negative surface density (such as a wormhole), or vice versa.


Subject(s)
Membranes , Molecular Dynamics Simulation
2.
Phys Rev Lett ; 131(23): 231401, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134794

ABSTRACT

The gravitational waves emitted by a perturbed black hole ringing down are well described by damped sinusoids, whose frequencies are those of quasinormal modes. Typically, first-order black hole perturbation theory is used to calculate these frequencies. Recently, it was shown that second-order effects are necessary in binary black hole merger simulations to model the gravitational-wave signal observed by a distant observer. Here, we show that the horizon of a newly formed black hole after the head-on collision of two black holes also shows evidence of nonlinear modes. Specifically, we identify one quadratic mode for the l=2 shear data, and two quadratic ones for the l=4, 6 data in simulations with varying mass ratio and boost parameter. The quadratic mode amplitudes display a quadratic relationship with the amplitudes of the linear modes that generate them.

3.
Exp Astron (Dordr) ; 51(3): 1385-1416, 2021.
Article in English | MEDLINE | ID: mdl-34720415

ABSTRACT

Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to probe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileo's telescope. The first few detections represent the beginning of a long journey of exploration. At the current pace of technological progress, it is reasonable to expect that the gravitational-wave detectors available in the 2035-2050s will be formidable tools to explore these fascinating objects in the cosmos, and space-based detectors with peak sensitivities in the mHz band represent one class of such tools. These detectors have a staggering discovery potential, and they will address fundamental open questions in physics and astronomy. Are astrophysical black holes adequately described by general relativity? Do we have empirical evidence for event horizons? Can black holes provide a glimpse into quantum gravity, or reveal a classical breakdown of Einstein's gravity? How and when did black holes form, and how do they grow? Are there new long-range interactions or fields in our Universe, potentially related to dark matter and dark energy or a more fundamental description of gravitation? Precision tests of black hole spacetimes with mHz-band gravitational-wave detectors will probe general relativity and fundamental physics in previously inaccessible regimes, and allow us to address some of these fundamental issues in our current understanding of nature.

4.
Phys Rev Lett ; 125(20): 201102, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33258644

ABSTRACT

Thanks to recent measurements of tidal deformability and radius, the nuclear equation of state and structure of neutron stars are now better understood. Here, we show that through resonant tidal excitations in a binary inspiral, the neutron crust generically undergoes elastic-to-plastic transition, which leads to crust heating and eventually meltdown. This process could induce ∼O(0.1) phase shift in the gravitational waveform. Detecting the timing and induced phase shift of this crust meltdown will shed light on the crust structure, such as the core-crust transition density, which previous measurements are insensitive to. A direct search using GW170817 data has not found this signal, possibly due to limited signal-to-noise ratio. We predict that such a signal may be observable with Advanced LIGO Plus and more likely with third-generation gravitational-wave detectors such as the Einstein Telescope and Cosmic Explorer.

5.
Phys Rev Lett ; 123(10): 101103, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31573296

ABSTRACT

We describe a new class of resonances for extreme mass-ratio inspirals (EMRIs): tidal resonances, induced by the tidal field of nearby stars or stellar-mass black holes. A tidal resonance can be viewed as a general relativistic extension of the Kozai-Lidov resonances in Newtonian systems and is distinct from the transient resonance already known for EMRI systems. Tidal resonances will generically occur for EMRIs. By probing their influence on the phase of an EMRI waveform, we can learn about the tidal environmental of the EMRI system, albeit at the cost of a more complicated waveform model. Observations by the Laser Interferometer Space Antenna of EMRI systems therefore have the potential to provide information about the distribution of stellar-mass objects near their host galactic-center black holes.

6.
Phys Rev Lett ; 116(5): 051101, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26894695

ABSTRACT

There is a deep tension between the well-developed theory of gravitational waves from isolated systems and the presence of a positive cosmological constant Λ, however tiny. In particular a generalization of Einstein's 1918 quadrupole formula that would allow a positive Λ is not yet available. We first explain the principal difficulties and then show that it is possible to overcome them in the weak field limit. These results also provide concrete hints for constructing the Λ>0 generalization of the Bondi-Sachs framework for full, nonlinear general relativity.

SELECTION OF CITATIONS
SEARCH DETAIL