Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Environ Sci Technol ; 57(48): 19999-20009, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37971371

ABSTRACT

Cyclic volatile methyl siloxanes (cVMS) are ubiquitous in hair care products (HCPs). cVMS emissions from HCPs are of concern, given the potential adverse impact of siloxanes on the environment and human health. To characterize cVMS emissions and exposures during the use of HCPs, realistic hair care experiments were conducted in a residential building. Siloxane-based HCPs were tested using common hair styling techniques, including straightening, curling, waving, and oiling. VOC concentrations were measured via proton-transfer-reaction time-of-flight mass spectrometry. HCP use drove rapid changes in the chemical composition of the indoor atmosphere. cVMS dominated VOC emissions from HCP use, and decamethylcyclopentasiloxane (D5) contributed the most to cVMS emissions. cVMS emission factors (EFs) during hair care routines ranged from 110-1500 mg/person and were influenced by HCP type, styling tools, operation temperatures, and hair length. The high temperature of styling tools and the high surface area of hair enhanced VOC emissions. Increasing the hair straightener temperature from room temperature to 210 °C increased cVMS EFs by 50-310%. Elevated indoor cVMS concentrations can result in substantial indoor-to-outdoor transport of cVMS via ventilation (0.4-6 tons D5/year in the U.S.); thus, hair care routines may augment the abundance of cVMS in the outdoor atmosphere.


Subject(s)
Hair Preparations , Volatile Organic Compounds , Humans , Siloxanes/analysis , Mass Spectrometry , Atmosphere , Hair Preparations/analysis , Environmental Monitoring
2.
Indoor Air ; 32(10): e13132, 2022 10.
Article in English | MEDLINE | ID: mdl-36305061

ABSTRACT

Indoor air pollution associated with biomass combustion for cooking remains a significant environmental health challenge in rural regions of sub-Saharan Africa; however, routine monitoring of woodsmoke aerosol concentrations continues to remain sparse. There is a paucity of field data on concentrations of combustion-generated ultrafine particles, which efficiently deposit in the human respiratory system, in such environments. Field measurements of ultrafine and fine woodsmoke aerosol (diameter range: 10-2500 nm) with field-portable diffusion chargers were conducted across nine wood-burning kitchens in Nandi County, Kenya. High time-resolution measurements (1 Hz) revealed that indoor particle number (PN) and particle surface area (PSA) concentrations of ultrafine and fine woodsmoke aerosol are strongly temporally variant, reach exceedingly high levels (PN > 106 /cm3 ; PSA > 104 µm2 /cm3 ) that are seldom observed in non-biomass burning environments, are influenced by kitchen architectural features, and are moderately to poorly correlated with carbon monoxide concentrations. In five kitchens, PN concentrations remained above 105 /cm3 for more than half of the day due to frequent cooking episodes. Indoor/outdoor ratios of PN and PSA concentrations were greater than 10 in most kitchens and exceeded 100 in several kitchens. Notably, the use of metal chimneys significantly reduced indoor PN and PSA concentrations.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Humans , Air Pollution, Indoor/analysis , Air Pollutants/analysis , Kenya , Environmental Monitoring , Particulate Matter/analysis , Aerosols , Cooking , Particle Size
3.
Environ Sci Technol ; 55(24): 16477-16488, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34851619

ABSTRACT

Building mechanical ventilation systems are a major driver of indoor air chemistry as their design and operation influences indoor ozone (O3) concentrations, the dilution and transport of indoor-generated volatile organic compounds (VOCs), and indoor environmental conditions. Real-time VOC and O3 measurements were integrated with a building sensing platform to evaluate the influence of mechanical ventilation modes and human occupancy on the dynamics of skin oil ozonolysis products (SOOPs) in an office in a LEED-certified building during the winter. The ventilation system operated under variable recirculation ratios (RRs) from RR = 0 (100% outdoor air) to RR = 1 (100% recirculation air). Time-resolved source rates for 6-methyl-5-hepten-2-one (6-MHO), 4-oxopentanal (4-OPA), and decanal were highly dynamic and changed throughout the day with RR and occupancy. Total SOOP source rates during high-occupancy periods (10:00-18:00) varied from 2500-3000 µg h-1 when RR = 0.1 to 6300-6700 µg h-1 when RR = 1. Source rates for gas-phase reactions, outdoor air, and occupant-associated emissions generally decreased with increasing RR. The recirculation air source rate increased with RR and typically became the dominant source for RR > 0.5. SOOP emissions from surface reservoirs were also a prominent source, contributing 10-50% to total source rates. Elevated per person SOOP emission factors were observed, potentially due to multiple layers of soiled clothing worn during winter.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Oils, Volatile , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Ozone/analysis , Respiration, Artificial , Ventilation
4.
Environ Sci Technol ; 55(3): 1864-1875, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33450149

ABSTRACT

Carpet dust contains microbial and chemical material that can impact early childhood health. Infants may be exposed to greater quantities of resuspended dust, given their close proximity to floor surfaces. Chamber experiments with a robotic infant were integrated with a material balance model to provide new fundamental insights into the size-dependency of infant crawling-induced particle resuspension and exposure. The robotic infant was exposed to resuspended particle concentrations from 105 to 106 m-3 in the near-floor (NF) microzone during crawling, with concentrations generally decreasing following vacuum cleaning of the carpets. A pronounced vertical variation in particle concentrations was observed between the NF microzone and bulk air. Resuspension fractions for crawling are similar to those for adult walking, with values ranging from 10-6 to 10-1 and increasing with particle size. Meaningful amounts of dust are resuspended during crawling, with emission rates of 0.1 to 2 × 104 µg h-1. Size-resolved inhalation intake fractions ranged from 5 to 8 × 103 inhaled particles per million resuspended particles, demonstrating that a significant fraction of resuspended particles can be inhaled. A new exposure metric, the dust-to-breathing zone transport efficiency, was introduced to characterize the overall probability of a settled particle being resuspended and delivered to the respiratory airways. Values ranged from less than 0.1 to over 200 inhaled particles per million settled particles, increased with particle size, and varied by over 2 orders of magnitude among 12 carpet types.


Subject(s)
Air Pollution, Indoor , Floors and Floorcoverings , Child , Child, Preschool , Dust , Humans , Infant , Particle Size
5.
Environ Sci Technol ; 55(12): 8097-8107, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34033479

ABSTRACT

NCl3 is formed as a disinfection byproduct in chlorinated swimming pools and can partition between the liquid and gas phases. Exposure to gas-phase NCl3 has been linked to asthma and can irritate the eyes and respiratory airways, thereby affecting the health and athletic performance of swimmers. This study involved an investigation of the spatiotemporal dynamics of gas-phase NCl3 in an aquatic center during a collegiate swim meet. Real-time (up to 1 Hz) measurements of gas-phase NCl3 were made via a novel on-line derivatization cavity ring-down spectrometer and a proton transfer reaction time-of-flight mass spectrometer. Significant temporal variations in gas-phase NCl3 and CO2 concentrations were observed across varying time scales, from seconds to hours. Gas-phase NCl3 concentrations increased with the number of active swimmers due to swimming-enhanced liquid-to-gas transfer of NCl3, with peak concentrations between 116 and 226 ppb. Strong correlations between concentrations of gas-phase NCl3 with concentrations of CO2 and water (relative humidity) were found and attributed to similar features in their physical transport processes in pool air. A vertical gradient in gas-phase NCl3 concentrations was periodically observed above the water surface, demonstrating that swimmers can be exposed to elevated levels of NCl3 beyond those measured in the bulk air.


Subject(s)
Nitrogen Compounds , Swimming Pools , Chlorides , Disinfection
6.
Environ Sci Technol ; 53(9): 4977-4987, 2019 05 07.
Article in English | MEDLINE | ID: mdl-31002496

ABSTRACT

Aerosol phase state is critical for quantifying aerosol effects on climate and air quality. However, significant challenges remain in our ability to predict and quantify phase state during its evolution in the atmosphere. Herein, we demonstrate that aerosol phase (liquid, semisolid, solid) exhibits a diel cycle in a mixed forest environment, oscillating between a viscous, semisolid phase state at night and liquid phase state with phase separation during the day. The viscous nighttime particles existed despite higher relative humidity and were independently confirmed by bounce factor measurements and atomic force microscopy. High-resolution mass spectrometry shows the more viscous phase state at night is impacted by the formation of terpene-derived and higher molecular weight secondary organic aerosol (SOA) and smaller inorganic sulfate mass fractions. Larger daytime particulate sulfate mass fractions, as well as a predominance of lower molecular weight isoprene-derived SOA, lead to the liquid state of the daytime particles and phase separation after greater uptake of liquid water, despite the lower daytime relative humidity. The observed diel cycle of aerosol phase should provoke rethinking of the SOA atmospheric lifecycle, as it suggests diurnal variability in gas-particle partitioning and mixing time scales, which influence aerosol multiphase chemistry, lifetime, and climate impacts.


Subject(s)
Atmosphere , Sulfates , Aerosols , Chemistry, Organic , Forests
7.
Inhal Toxicol ; 31(4): 131-146, 2019 03.
Article in English | MEDLINE | ID: mdl-31187656

ABSTRACT

Objectives: US water infrastructure is in need of widespread repair due to age-related deterioration. Currently, the cured-in-place (CIPP) procedure is the most common method for water pipe repair. This method involves the on-site manufacture of a new polymer composite plastic liner within the damaged pipe. The CIPP process can release materials resulting in occupational and public health concerns. To understand hazards associated with CIPP-related emission exposures, an in vitro toxicity assessment was performed. Materials and Methods: Mouse alveolar epithelial and alveolar macrophage cell lines and condensates collected at 3 worksites utilizing styrene-based resins were utilized for evaluations. All condensate samples were normalized based on the major emission component, styrene. Further, a styrene-only exposure group was used as a control to determine mixture related toxicity. Results: Cytotoxicity differences were observed between worksite samples, with the CIPP worksite 4 sample inducing the most cell death. A proteomic evaluation was performed, which demonstrated styrene-, worksite-, and cell-specific alterations. This examination of protein expression changes determined potential biomarkers of exposure including transglutaminase 2, advillin, collagen type 1, perilipin-2, and others. Pathway analysis of exposure-induced proteomic alterations identified MYC and p53 to be regulators of cellular responses. Protein changes were also related to pathways involved in cell damage, immune response, and cancer. Conclusions: Together these findings demonstrate potential risks associated with the CIPP procedure as well as variations between worksites regarding emissions and toxicity. Our evaluation identified biological pathways that require a future evaluation and also demonstrates that exposure assessment of CIPP worksites should examine multiple chemical components beyond styrene, as many cellular responses were styrene-independent.


Subject(s)
Air Pollutants, Occupational/toxicity , Environmental Monitoring/methods , Epithelial Cells/drug effects , Macrophages, Alveolar/drug effects , Manufactured Materials/toxicity , Styrene/toxicity , Animals , Cell Survival/drug effects , Dose-Response Relationship, Drug , Epithelial Cells/immunology , Epithelial Cells/metabolism , Gene Expression/drug effects , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mice , Oxidative Stress/drug effects , Proteome/genetics , Proteome/metabolism , RAW 264.7 Cells , Workplace
8.
Build Environ ; 170: 1-16, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-32055099

ABSTRACT

Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.

9.
Environ Sci Technol ; 52(1): 237-247, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29144737

ABSTRACT

Human-induced resuspension of floor dust is a dynamic process that can serve as a major indoor source of biological particulate matter (bioPM). Inhalation exposure to the microbial and allergenic content of indoor dust is associated with adverse and protective health effects. This study evaluates infant and adult inhalation exposures and respiratory tract deposited dose rates of resuspended bioPM from carpets. Chamber experiments were conducted with a robotic crawling infant and an adult performing a walking sequence. Breathing zone (BZ) size distributions of resuspended fluorescent biological aerosol particles (FBAPs), a bioPM proxy, were monitored in real-time. FBAP exposures were highly transient during periods of locomotion. Both crawling and walking delivered a significant number of resuspended FBAPs to the BZ, with concentrations ranging from 0.5 to 2 cm-3 (mass range: ∼50 to 600 µg/m3). Infants and adults are primarily exposed to a unimodal FBAP size distribution between 2 and 6 µm, with infants receiving greater exposures to super-10 µm FBAPs. In just 1 min of crawling or walking, 103-104 resuspended FBAPs can deposit in the respiratory tract, with an infant receiving much of their respiratory tract deposited dose in their lower airways. Per kg body mass, an infant will receive a nearly four times greater respiratory tract deposited dose of resuspended FBAPs compared to an adult.


Subject(s)
Air Pollution, Indoor , Inhalation Exposure , Dust , Humans , Infant , Particle Size , Particulate Matter
10.
J Occup Environ Hyg ; 14(8): 620-633, 2017 08.
Article in English | MEDLINE | ID: mdl-28557668

ABSTRACT

A cough jet can travel beyond the breathing zone of the source person, and thus, infectious viral- and bacterial-laden particles can be transported from the source person to others in close proximity. To reduce the interpersonal transmission of coughed particles, the objective of this study was to analytically and experimentally investigate the performance of downward plane jets with various discharge velocities. Chamber measurements were conducted to examine the interaction between a transient cough jet (discharge velocities of 12 m/sec and 16 m/sec) and a steady downward plane jet (discharge velocities from 1.0-8.5 m/sec) with respect to the transport of and human exposure to coughed particles. The results show that a relatively high-speed cough can easily penetrate a downward plane jet with a discharge velocity of less than 6 m/sec. A downward plane jet with a discharge velocity of 8.5 m/sec can bend the cough jet to a certain extent. In this study, momentum comparison of the cough jet and the downward plane jet shows that the value of personal exposure to coughed particles depends on the ratio of jet momentums. The results show that when the two momentums are equivalent or if the downward plane jet has a greater momentum, the cough jet is deflected downward and does not reach the breathing zone of the target thermal dummy. Using the ratio of the two momentums, it may be estimated whether the transmission of a cough jet can be controlled. A trajectory model was developed based on the ratio of the two momentums of a cough jet and a downward jet and was validated using the experimental data. In addition, the predicted trajectory of the cough jet agreed well with the results from smoke visualization experiments. This model can be used to guide the design of downward plane jet systems for protection of occupants from coughed particles.


Subject(s)
Air Movements , Cough , Inhalation Exposure/prevention & control , Particulate Matter , Ventilation/methods , Manikins
11.
Environ Sci Technol ; 48(6): 3541-9, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24548111

ABSTRACT

Infants spend most of their time sleeping and are likely to be exposed to elevated concentrations of chemicals released from their crib mattresses. Small-scale chamber experiments were conducted to determine the area-specific emission rates (SERs) of volatile organic compounds (VOCs) in a collection of twenty new and used crib mattresses. All mattress samples were found to emit VOCs and the mean values of total VOC (TVOC) SERs were 56 µg/m(2)h at 23 °C and 139 µg/m(2)h at 36 °C. TVOC SERs were greater for new mattresses compared to used ones and were influenced by the type of foam material and the presence of mattress cover layer. A variety of VOCs were identified, with polyurethane foam releasing a greater diversity of VOCs compared to polyester foam. Large-scale chamber experiments were conducted with an infant thermal manikin. TVOC concentrations sampled in the breathing zone and interior pore air of the crib mattress foam were found to be greater than the bulk room air by factors in the range of 1.8 to 2.4 and 7.5 to 21, respectively. The results suggest that crib mattresses are an important source of VOCs and infant exposure to VOCs are possibly elevated in their sleep microenvironments.


Subject(s)
Beds , Environmental Exposure/analysis , Infant Equipment , Volatile Organic Compounds/analysis , Environmental Monitoring , Humans , Infant
12.
J Breath Res ; 18(4)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39059409

ABSTRACT

Tetrachloroethylene (PCE) is a widely utilized volatile chemical in industrial applications, including dry cleaning and metal degreasing. Exposure to PCE potentially presents a significant health risk to workers as well as communities near contamination sites. Adverse health effects arise not only from PCE, but also from PCE degradation products, such as trichloroethylene (TCE) and vinyl chloride (VC). PCE, TCE, and VC can contaminate water, soil, and air, leading to exposure through multiple pathways, including inhalation, ingestion, and dermal contact. This study focused on a community setting in Martinsville, Indiana, a working-class Midwestern community in the United States, where extensive PCE contamination has occurred due to multiple contamination sites (referring to 'plumes'), including a Superfund site. Utilizing proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS), PCE, TCE, and VC concentrations were measured in the exhaled breath of 73 residents from both within and outside the plume areas. PCE was detected in 66 samples, TCE in 26 samples, and VC in 68 samples. Our results revealed a significant positive correlation between the concentrations of these compounds in exhaled breath and indoor air (Pearson correlation coefficients: PCE = 0.75, TCE = 0.71, and VC = 0.89). This study confirms the presence of PCE and its degradation products in exhaled breath in a community exposure investigation, demonstrating the potential of using exhaled breath analysis in monitoring exposure to environmental contaminants. This study showed the feasibility of utilizing PTR-TOF-MS in community investigations to assess exposure to PCE and its degradation products by measuring these compounds in exhaled breath and indoor air.


Subject(s)
Air Pollution, Indoor , Breath Tests , Tetrachloroethylene , Humans , Breath Tests/methods , Air Pollution, Indoor/analysis , Tetrachloroethylene/analysis , Male , Female , Adult , Exhalation , Middle Aged , Environmental Exposure/analysis , Indiana , Environmental Monitoring/methods
13.
PNAS Nexus ; 3(2): pgae044, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39015346

ABSTRACT

Nanocluster aerosol (NCA: particles in the size range of 1-3 nm) are a critically important, yet understudied, class of atmospheric aerosol particles. NCA efficiently deposit in the human respiratory system and can translocate to vital organs. Due to their high surface area-to-mass ratios, NCA are associated with a heightened propensity for bioactivity and toxicity. Despite the human health relevance of NCA, little is known regarding the prevalence of NCA in indoor environments where people spend the majority of their time. In this study, we quantify the formation and transformation of indoor atmospheric NCA down to 1 nm via high-resolution online nanoparticle measurements during propane gas cooking in a residential building. We observed a substantial pool of sub-1.5 nm NCA in the indoor atmosphere during cooking periods, with aerosol number concentrations often dominated by the newly formed NCA. Indoor atmospheric NCA emission factors can reach up to ∼1016 NCA/kg-fuel during propane gas cooking and can exceed those for vehicles with gasoline and diesel engines. Such high emissions of combustion-derived indoor NCA can result in substantial NCA respiratory exposures and dose rates for children and adults, significantly exceeding that for outdoor traffic-associated NCA. Combustion-derived indoor NCA undergo unique size-dependent physical transformations, strongly influenced by particle coagulation and condensation of low-volatility cooking vapors. We show that indoor atmospheric NCA need to be measured directly and cannot be predicted using conventional indoor air pollution markers such as PM2.5 mass concentrations and NO x (NO + NO2) mixing ratios.

14.
Environ Sci Technol Lett ; 10(2): 152-158, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36818461

ABSTRACT

Cured-in-place-pipe (CIPP) is an onsite plastic manufacturing technology used in the U.S. and has not been evaluated for regulatory compliance with federal air pollution laws. The practice involves the discharge of manufacturing waste into the environment. The study goal was to estimate the magnitude of volatile organic compounds (VOCs) discharged into the atmosphere for styrene and nonstyrene composite manufacture and examine low-cost air monitoring sensor reliability. Time-resolved emission analysis revealed that VOC emission was not only isolated to the thermal curing period but also occurred before and after curing. In addition to the styrene monomer, other gas-phase hazardous air pollutants regulated under the Clean Air Act were also emitted. Based on typical CIPP installations, 0.9 to 16.6 U.S. tons of emitted VOCs were estimated for styrene CIPPs, and 0.09 to 1.6 U.S. tons of emitted VOCs were estimated for nonstyrene CIPPs. Because the number and size of CIPPs manufactured in a single community can vary, the total air pollution burden will significantly differ across communities. Low-cost VOC sensors commonly utilized near CIPP manufacturing activities did not accurately quantify styrene and should not be relied upon for that purpose. Up to several thousand-fold detection differences were observed. Regulatory evaluation of CIPP air pollution and PID sensor reliability assessments are recommended.

15.
Toxicol Sci ; 193(1): 62-79, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36912746

ABSTRACT

Cured-in-place pipe (CIPP) technology is increasingly being utilized to repair aging and damaged pipes, however, there are concerns associated with the public health hazards of emissions. CIPP installation involves the manufacture of a new plastic composite pipe at the worksite and includes multiple variable components including resin material, curing methods, and operational conditions. We hypothesize styrene-based composite manufacturing emissions (CMEs) will induce greater pulmonary inflammatory responses and oxidative stress, as well as neurological toxicity compared with nonstyrene CMEs. Further, these CME-toxicological responses will be sex- and time-dependent. To test the hypothesis, representative CMEs were generated using a laboratory curing chamber and characterized using thermal desorption-gas chromatography-mass spectrometry and photoionization detector. Styrene was released during staying, isothermal curing, and cooling phases of the process and peaked during the cooling phase. Male and female C57BL6/J mice were utilized to examine alterations in pulmonary responses and neurotoxicity 1 day and 7 days following exposure to air (controls), nonstyrene-CMEs, or styrene-CMEs. Serum styrene metabolites were increased in mice exposed to styrene-CMEs. Metabolic and lipid profiling revealed alterations related to CIPP emissions that were resin-, time-, and sex-dependent. Exposure to styrene-CMEs resulted in an influx of lymphocytes in both sexes. Expression of inflammatory and oxidative stress markers, including Tnfα, Vcam1, Ccl2, Cxcl2, Il6, Cxcl1, Tgfß1, Tgmt2, and Hmox1, displayed alterations following exposure to emissions. These changes in pulmonary and neurological markers of toxicity were dependent on resin type, sex, and time. Overall, this study demonstrates resin-specific differences in representative CMEs and alterations in toxicity endpoints, which can potentially inform safer utilization of composite manufacturing processes.


Subject(s)
Oxidative Stress , Styrene , Male , Female , Mice , Animals , Styrene/toxicity
16.
J Hazard Mater ; 422: 126832, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34449354

ABSTRACT

The cured-in-place pipe (CIPP) manufacturing process is used to repair buried pipes, and its waste commonly discharged into the air can enter nearby buildings. Exposure can prompt illness and the need for medical care. A mass balance model was applied to estimate indoor styrene concentrations due to intrusion of CIPP emissions through plumbing under different bathroom ventilation conditions. To better understand building contamination and recommend emergency response actions, calculations to estimate chemical intrusion through plumbing were developed. Field reports and study calculations showed that contractor-applied external pressures during plastic manufacture have and can displace plumbing trap water seals. Modeled styrene vapor concentrations that entered the building (1, 300, 1000 ppm) were similar to those measured at CIPP worksites. Modeling revealed that in some cases, bathroom exhaust fan operation during a CIPP project may increase indoor styrene concentrations due to enhanced entrainment of styrene-laden air from the sink and toilet. However, styrene concentrations decreased with increasing air leakage across the bathroom door due to reduced suction from the plumbing system. CIPP waste discharge should be treated as a hazardous material release and can pose a threat to human health. Immediate building evacuation, respiratory protection, provision of medical assistance, source elimination, and building decontamination are recommended.


Subject(s)
Air Pollution, Indoor , Emergency Responders , Air Pollution, Indoor/analysis , Environmental Monitoring , Humans , Plastics , Public Health , Styrene/analysis
17.
Ann Work Expo Health ; 66(4): 520-536, 2022 04 22.
Article in English | MEDLINE | ID: mdl-34365499

ABSTRACT

STOFFENMANAGER® and the Advanced REACH Tool (ART) are recommended tools by the European Chemical Agency for regulatory chemical safety assessment. The models are widely used and accepted within the scientific community. STOFFENMANAGER® alone has more than 37 000 users globally and more than 310 000 risk assessment have been carried out by 2020. Regardless of their widespread use, this is the first study evaluating the theoretical backgrounds of each model. STOFFENMANAGER® and ART are based on a modified multiplicative model where an exposure base level (mg m-3) is replaced with a dimensionless intrinsic emission score and the exposure modifying factors are replaced with multipliers that are mainly based on subjective categories that are selected by using exposure taxonomy. The intrinsic emission is a unit of concentration to the substance emission potential that represents the concentration generated in a standardized task without local ventilation. Further information or scientific justification for this selection is not provided. The multipliers have mainly discrete values given in natural logarithm steps (…, 0.3, 1, 3, …) that are allocated by expert judgements. The multipliers scientific reasoning or link to physical quantities is not reported. The models calculate a subjective exposure score, which is then translated to an exposure level (mg m-3) by using a calibration factor. The calibration factor is assigned by comparing the measured personal exposure levels with the exposure score that is calculated for the respective exposure scenarios. A mixed effect regression model was used to calculate correlation factors for four exposure group [e.g. dusts, vapors, mists (low-volatiles), and solid object/abrasion] by using ~1000 measurements for STOFFENMANAGER® and 3000 measurements for ART. The measurement data for calibration are collected from different exposure groups. For example, for dusts the calibration data were pooled from exposure measurements sampled from pharmacies, bakeries, construction industry, and so on, which violates the empirical model basic principles. The calibration databases are not publicly available and thus their quality or subjective selections cannot be evaluated. STOFFENMANAGER® and ART can be classified as subjective categorization tools providing qualitative values as their outputs. By definition, STOFFENMANAGER® and ART cannot be classified as mechanistic models or empirical models. This modeling algorithm does not reflect the physical concept originally presented for the STOFFENMANAGER® and ART. A literature review showed that the models have been validated only at the 'operational analysis' level that describes the model usability. This review revealed that the accuracy of STOFFENMANAGER® is in the range of 100 000 and for ART 100. Calibration and validation studies have shown that typical log-transformed predicted exposure concentration and measured exposure levels often exhibit weak Pearson's correlations (r is <0.6) for both STOFFENMANAGER® and ART. Based on these limitations and performance departure from regulatory criteria for risk assessment models, it is recommended that STOFFENMANAGER® and ART regulatory acceptance for chemical safety decision making should be explicitly qualified as to their current deficiencies.


Subject(s)
Occupational Exposure , Algorithms , Environmental Monitoring , Humans , Occupational Exposure/analysis , Risk Assessment , Ventilation
18.
Sci Adv ; 8(8): eabj9156, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35213219

ABSTRACT

Surface cleaning using commercial disinfectants, which has recently increased during the coronavirus disease 2019 pandemic, can generate secondary indoor pollutants both in gas and aerosol phases. It can also affect indoor air quality and health, especially for workers repeatedly exposed to disinfectants. Here, we cleaned the floor of a mechanically ventilated office room using a commercial cleaner while concurrently measuring gas-phase precursors, oxidants, radicals, secondary oxidation products, and aerosols in real-time; these were detected within minutes after cleaner application. During cleaning, indoor monoterpene concentrations exceeded outdoor concentrations by two orders of magnitude, increasing the rate of ozonolysis under low (<10 ppb) ozone levels. High number concentrations of freshly nucleated sub-10-nm particles (≥105 cm-3) resulted in respiratory tract deposited dose rates comparable to or exceeding that of inhalation of vehicle-associated aerosols.

19.
Nat Nanotechnol ; 17(11): 1171-1177, 2022 11.
Article in English | MEDLINE | ID: mdl-36203091

ABSTRACT

Nanoplastic particles are inadequately characterized environmental pollutants that have adverse effects on aquatic and atmospheric systems, causing detrimental effects to human health through inhalation, ingestion and skin penetration1-3. At present, it is explicitly assumed that environmental nanoplastics (EnvNPs) are weathering fragments of microplastic or larger plastic debris that have been discharged into terrestrial and aquatic environments, while atmospheric EnvNPs are attributed solely to aerosolization by wind and other mechanical forces. However, the sources and emissions of unintended EnvNPs are poorly understood and are therefore largely unaccounted for in various risk assessments4. Here we show that large quantities of EnvNPs may be directly emitted into the atmosphere as steam-laden waste components discharged from a technology commonly used to repair sewer pipes in urban areas. A comprehensive chemical analysis of the discharged waste condensate has revealed the abundant presence of insoluble colloids, which after drying form solid organic particles with a composition and viscosity consistent with EnvNPs. We suggest that airborne emissions of EnvNPs from these globally used sewer repair practices may be prevalent in highly populated urban areas5, and may have important implications for air quality and toxicological levels that need to be mitigated.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Microplastics , Plastics/analysis , Plastics/chemistry , Atmosphere , Environmental Monitoring , Water Pollutants, Chemical/analysis
20.
J Hazard Mater Lett ; 2: 100042, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34977843

ABSTRACT

The COVID-19 pandemic has resulted in increased usage of ethanol-based disinfectants for surface inactivation of SARS-CoV-2 in buildings. Emissions of volatile organic compounds (VOCs) and particles from ethanol-based disinfectant sprays were characterized in real-time (1 Hz) via a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) and a high-resolution electrical low-pressure impactor (HR-ELPI+), respectively. Ethanol-based disinfectants drove sudden changes in the chemical composition of indoor air. VOC and particle concentrations increased immediately after application of the disinfectants, remained elevated during surface contact time, and gradually decreased after wiping. The disinfectants produced a broad spectrum of VOCs with mixing ratios spanning the sub-ppb to ppm range. Ethanol was the dominant VOC emitted by mass, with concentrations exceeding 103 µg m-3 and emission factors ranging from 101 to 102 mg g-1. Listed and unlisted diols, monoterpenes, and monoterpenoids were also abundant. The pressurized sprays released significant quantities (104-105 cm-3) of nano-sized particles smaller than 100 nm, resulting in large deposited doses in the tracheobronchial and pulmonary regions of the respiratory system. Inhalation exposure to VOCs varied with time during the building disinfection events. Much of the VOC inhalation intake (>60 %) occurred after the disinfectant was sprayed and wiped off the surface. Routine building disinfection with ethanol-based sprays during the COVID-19 pandemic may present a human health risk given the elevated production of volatile chemicals and nano-sized particles.

SELECTION OF CITATIONS
SEARCH DETAIL