Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Publication year range
1.
Nature ; 601(7894): 588-594, 2022 01.
Article in English | MEDLINE | ID: mdl-34937049

ABSTRACT

Present-day people from England and Wales have more ancestry derived from early European farmers (EEF) than did people of the Early Bronze Age1. To understand this, here we generated genome-wide data from 793 individuals, increasing data from the Middle to the Late Bronze Age and Iron Age in Britain by 12-fold, and western and central Europe by 3.5-fold. Between 1000 and 875 BC, EEF ancestry increased in southern Britain (England and Wales) but not northern Britain (Scotland) due to incorporation of migrants who arrived at this time and over previous centuries, and who were genetically most similar to ancient individuals from France. These migrants contributed about half the ancestry of people of England and Wales from the Iron Age, thereby creating a plausible vector for the spread of early Celtic languages into Britain. These patterns are part of a broader trend of EEF ancestry becoming more similar across central and western Europe in the Middle to the Late Bronze Age, coincident with archaeological evidence of intensified cultural exchange2-6. There was comparatively less gene flow from continental Europe during the Iron Age, and the independent genetic trajectory in Britain is also reflected in the rise of the allele conferring lactase persistence to approximately 50% by this time compared to approximately 7% in central Europe where it rose rapidly in frequency only a millennium later. This suggests that dairy products were used in qualitatively different ways in Britain and in central Europe over this period.


Subject(s)
Archaeology , Farmers , Europe , France , Genome, Human/genetics , Human Migration/history , Humans , Infant , United Kingdom
2.
Nature ; 599(7883): 41-46, 2021 11.
Article in English | MEDLINE | ID: mdl-34671160

ABSTRACT

We are a group of archaeologists, anthropologists, curators and geneticists representing diverse global communities and 31 countries. All of us met in a virtual workshop dedicated to ethics in ancient DNA research held in November 2020. There was widespread agreement that globally applicable ethical guidelines are needed, but that recent recommendations grounded in discussion about research on human remains from North America are not always generalizable worldwide. Here we propose the following globally applicable guidelines, taking into consideration diverse contexts. These hold that: (1) researchers must ensure that all regulations were followed in the places where they work and from which the human remains derived; (2) researchers must prepare a detailed plan prior to beginning any study; (3) researchers must minimize damage to human remains; (4) researchers must ensure that data are made available following publication to allow critical re-examination of scientific findings; and (5) researchers must engage with other stakeholders from the beginning of a study and ensure respect and sensitivity to stakeholder perspectives. We commit to adhering to these guidelines and expect they will promote a high ethical standard in DNA research on human remains going forward.


Subject(s)
Cadaver , DNA, Ancient/analysis , Guidelines as Topic , Human Genetics/ethics , Internationality , Molecular Biology/ethics , American Indian or Alaska Native , Anthropology/ethics , Archaeology/ethics , Community-Institutional Relations , Humans , Indigenous Peoples , Stakeholder Participation , Translations
3.
Nucleic Acids Res ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38908028

ABSTRACT

Filamentous Actinobacteria, recently renamed Actinomycetia, are the most prolific source of microbial bioactive natural products. Studies on biosynthetic gene clusters benefit from or require chromosome-level assemblies. Here, we provide DNA sequences from >1000 isolates: 881 complete genomes and 153 near-complete genomes, representing 28 genera and 389 species, including 244 likely novel species. All genomes are from filamentous isolates of the class Actinomycetia from the NBC culture collection. The largest genus is Streptomyces with 886 genomes including 742 complete assemblies. We use this data to show that analysis of complete genomes can bring biological understanding not previously derived from more fragmented sequences or less systematic datasets. We document the central and structured location of core genes and distal location of specialized metabolite biosynthetic gene clusters and duplicate core genes on the linear Streptomyces chromosome, and analyze the content and length of the terminal inverted repeats which are characteristic for Streptomyces. We then analyze the diversity of trans-AT polyketide synthase biosynthetic gene clusters, which encodes the machinery of a biotechnologically highly interesting compound class. These insights have both ecological and biotechnological implications in understanding the importance of high quality genomic resources and the complex role synteny plays in Actinomycetia biology.

4.
Nucleic Acids Res ; 51(D1): D603-D610, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399496

ABSTRACT

With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.


Subject(s)
Genome , Genomics , Multigene Family , Biosynthetic Pathways/genetics
5.
Hum Brain Mapp ; 45(4): e26625, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433665

ABSTRACT

Estimated age from brain MRI data has emerged as a promising biomarker of neurological health. However, the absence of large, diverse, and clinically representative training datasets, along with the complexity of managing heterogeneous MRI data, presents significant barriers to the development of accurate and generalisable models appropriate for clinical use. Here, we present a deep learning framework trained on routine clinical data (N up to 18,890, age range 18-96 years). We trained five separate models for accurate brain age prediction (all with mean absolute error ≤4.0 years, R2 ≥ .86) across five different MRI sequences (T2 -weighted, T2 -FLAIR, T1 -weighted, diffusion-weighted, and gradient-recalled echo T2 *-weighted). Our trained models offer dual functionality. First, they have the potential to be directly employed on clinical data. Second, they can be used as foundation models for further refinement to accommodate a range of other MRI sequences (and therefore a range of clinical scenarios which employ such sequences). This adaptation process, enabled by transfer learning, proved effective in our study across a range of MRI sequences and scan orientations, including those which differed considerably from the original training datasets. Crucially, our findings suggest that this approach remains viable even with limited data availability (as low as N = 25 for fine-tuning), thus broadening the application of brain age estimation to more diverse clinical contexts and patient populations. By making these models publicly available, we aim to provide the scientific community with a versatile toolkit, promoting further research in brain age prediction and related areas.


Subject(s)
Brain , Mental Recall , Humans , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Child, Preschool , Brain/diagnostic imaging , Diffusion , Neuroimaging , Machine Learning
6.
Radiology ; 310(2): e230793, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38319162

ABSTRACT

Gadolinium-based contrast agents (GBCAs) form the cornerstone of current primary brain tumor MRI protocols at all stages of the patient journey. Though an imperfect measure of tumor grade, GBCAs are repeatedly used for diagnosis and monitoring. In practice, however, radiologists will encounter situations where GBCA injection is not needed or of doubtful benefit. Reducing GBCA administration could improve the patient burden of (repeated) imaging (especially in vulnerable patient groups, such as children), minimize risks of putative side effects, and benefit costs, logistics, and the environmental footprint. On the basis of the current literature, imaging strategies to reduce GBCA exposure for pediatric and adult patients with primary brain tumors will be reviewed. Early postoperative MRI and fixed-interval imaging of gliomas are examples of GBCA exposure with uncertain survival benefits. Half-dose GBCAs for gliomas and T2-weighted imaging alone for meningiomas are among options to reduce GBCA use. While most imaging guidelines recommend using GBCAs at all stages of diagnosis and treatment, non-contrast-enhanced sequences, such as the arterial spin labeling, have shown a great potential. Artificial intelligence methods to generate synthetic postcontrast images from decreased-dose or non-GBCA scans have shown promise to replace GBCA-dependent approaches. This review is focused on pediatric and adult gliomas and meningiomas. Special attention is paid to the quality and real-life applicability of the reviewed literature.


Subject(s)
Brain Neoplasms , Glioma , Meningeal Neoplasms , Meningioma , Adult , Humans , Child , Contrast Media , Gadolinium , Fantasy , Artificial Intelligence , Magnetic Resonance Imaging , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging
7.
Nature ; 555(7695): 190-196, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29466337

ABSTRACT

From around 2750 to 2500 bc, Bell Beaker pottery became widespread across western and central Europe, before it disappeared between 2200 and 1800 bc. The forces that propelled its expansion are a matter of long-standing debate, and there is support for both cultural diffusion and migration having a role in this process. Here we present genome-wide data from 400 Neolithic, Copper Age and Bronze Age Europeans, including 226 individuals associated with Beaker-complex artefacts. We detected limited genetic affinity between Beaker-complex-associated individuals from Iberia and central Europe, and thus exclude migration as an important mechanism of spread between these two regions. However, migration had a key role in the further dissemination of the Beaker complex. We document this phenomenon most clearly in Britain, where the spread of the Beaker complex introduced high levels of steppe-related ancestry and was associated with the replacement of approximately 90% of Britain's gene pool within a few hundred years, continuing the east-to-west expansion that had brought steppe-related ancestry into central and northern Europe over the previous centuries.


Subject(s)
Cultural Evolution/history , Genome, Human/genetics , Genomics , Human Migration/history , Chromosomes, Human, Y/genetics , DNA, Ancient , Europe , Gene Pool , Genetics, Population , Haplotypes , History, Ancient , Humans , Male , Spatio-Temporal Analysis
9.
BMC Bioinformatics ; 24(1): 181, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37131131

ABSTRACT

BACKGROUND: Co-localized sets of genes that encode specialized functions are common across microbial genomes and occur in genomes of larger eukaryotes as well. Important examples include Biosynthetic Gene Clusters (BGCs) that produce specialized metabolites with medicinal, agricultural, and industrial value (e.g. antimicrobials). Comparative analysis of BGCs can aid in the discovery of novel metabolites by highlighting distribution and identifying variants in public genomes. Unfortunately, gene-cluster-level homology detection remains inaccessible, time-consuming and difficult to interpret. RESULTS: The comparative gene cluster analysis toolbox (CAGECAT) is a rapid and user-friendly platform to mitigate difficulties in comparative analysis of whole gene clusters. The software provides homology searches and downstream analyses without the need for command-line or programming expertise. By leveraging remote BLAST databases, which always provide up-to-date results, CAGECAT can yield relevant matches that aid in the comparison, taxonomic distribution, or evolution of an unknown query. The service is extensible and interoperable and implements the cblaster and clinker pipelines to perform homology search, filtering, gene neighbourhood estimation, and dynamic visualisation of resulting variant BGCs. With the visualisation module, publication-quality figures can be customized directly from a web-browser, which greatly accelerates their interpretation via informative overlays to identify conserved genes in a BGC query. CONCLUSION: Overall, CAGECAT is an extensible software that can be interfaced via a standard web-browser for whole region homology searches and comparison on continually updated genomes from NCBI. The public web server and installable docker image are open source and freely available without registration at: https://cagecat.bioinformatics.nl .


Subject(s)
Computers , Software , Multigene Family , Genome , Cluster Analysis
10.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Article in English | MEDLINE | ID: mdl-36912262

ABSTRACT

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Subject(s)
Brain Neoplasms , Glioma , Magnetic Resonance Imaging , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Contrast Media , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Preoperative Period
11.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Article in English | MEDLINE | ID: mdl-36866773

ABSTRACT

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Subject(s)
Brain Neoplasms , Glioma , Humans , Magnetic Resonance Imaging/methods , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Magnetic Resonance Spectroscopy/methods , Diffusion Magnetic Resonance Imaging
12.
Org Biomol Chem ; 21(12): 2531-2538, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36876905

ABSTRACT

Fourteen-membered macrolides are a class of compounds with significant clinical value as antibacterial agents. As part of our ongoing investigation into the metabolites of Streptomyces sp. MST-91080, we report the discovery of resorculins A and B, unprecedented 3,5-dihydroxybenzoic acid (α-resorcylic acid)-containing 14-membered macrolides. We sequenced the genome of MST-91080 and identified the putative resorculin biosynthetic gene cluster (rsn BGC). The rsn BGC is hybrid of type I and type III polyketide synthases. Bioinformatic analysis revealed that the resorculins are relatives of known hybrid polyketides: kendomycin and venemycin. Resorculin A exhibited antibacterial activity against Bacillus subtilis (MIC 19.8 µg mL-1), while resorculin B showed cytotoxic activity against the NS-1 mouse myeloma cell line (IC50 3.6 µg mL-1).


Subject(s)
Multiple Myeloma , Polyketides , Streptomyces , Animals , Mice , Polyketides/pharmacology , Polyketides/metabolism , Macrolides/pharmacology , Macrolides/metabolism , Cell Line, Tumor , Streptomyces/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Multigene Family
13.
Neuroradiology ; 65(9): 1343-1352, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37468750

ABSTRACT

PURPOSE: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas. METHODS: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed. Diagnostic performance of the partial T2-FLAIR mismatch sign was evaluated. Subset analyses were performed to assess associations of imaging markers with overall survival (OS). RESULTS: One hundred twenty-one (5.6%) of 2165 grade 4 gliomas were IDH-mutant. Partial T2-FLAIR mismatch was present in 40 (1.8%) cases, 32 of which were IDH-mutant, yielding 26.4% sensitivity, 99.6% specificity, 80.0% positive predictive value, and 95.8% negative predictive value. Multivariate logistic regression demonstrated IDH mutation was significantly associated with partial T2-FLAIR mismatch (odds ratio [OR] 5.715, 95% CI [1.896, 17.221], p = 0.002), younger age (OR 0.911 [0.895, 0.927], p < 0.001), tumor centered in frontal lobe (OR 3.842, [2.361, 6.251], p < 0.001), absence of multicentricity (OR 0.173, [0.049, 0.612], p = 0.007), and presence of cystic (OR 6.596, [3.023, 14.391], p < 0.001) or non-enhancing solid components (OR 6.069, [3.371, 10.928], p < 0.001). Multivariate Cox analysis demonstrated cystic components (p = 0.024) and non-enhancing solid components (p = 0.003) were associated with longer OS, while older age (p < 0.001), frontal lobe center (p = 0.008), multifocality (p < 0.001), and multicentricity (p < 0.001) were associated with shorter OS. CONCLUSION: Partial T2-FLAIR mismatch sign is highly specific for IDH mutation in WHO grade 4 gliomas.


Subject(s)
Brain Neoplasms , Glioma , Adult , Humans , Isocitrate Dehydrogenase/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Retrospective Studies , Glioma/diagnostic imaging , Glioma/genetics , Magnetic Resonance Imaging/methods , Mutation , World Health Organization
14.
Support Care Cancer ; 31(6): 356, 2023 May 27.
Article in English | MEDLINE | ID: mdl-37243744

ABSTRACT

PURPOSE: People with primary malignant brain tumors (PMBT) undergo anti-tumor treatment and are followed up with MRI interval scans. There are potential burdens and benefits to interval scanning, yet high-quality evidence to suggest whether scans are beneficial or alter outcomes of importance for patients is lacking. We aimed to gain an in-depth understanding of how adults living with PMBTs experience and cope with interval scanning. METHODS: Twelve patients diagnosed with WHO grade III or IV PMBT from two sites in the UK took part. Using a semi-structured interview guide, they were asked about their experiences of interval scans. A constructivist grounded theory approach was used to analyze data. RESULTS: Although most participants found interval scans uncomfortable, they accepted that scans were something that they had to do and were using various coping methods to get through the MRI scan. All participants said that the wait between their scan and results was the most difficult part. Despite the difficulties they experienced, all participants said that they would rather have interval scans than wait for a change in their symptoms. Most of the time, scans provided relief, gave participants some certainty in an uncertain situation, and a short-term sense of control over their lives. CONCLUSION: The present study shows that interval scanning is important and highly valued by patients living with PMBT. Although interval scans are anxiety provoking, they appear to help people living with PMBT cope with the uncertainty of their condition.


Subject(s)
Anxiety , Brain Neoplasms , Humans , Adult , Anxiety/therapy , Anxiety Disorders , Brain Neoplasms/diagnostic imaging
15.
Br J Neurosurg ; : 1-7, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37652406

ABSTRACT

PURPOSE: We report what we believe is the first application of robotically constrained image-guided surgery to approach a fistulous micro-arteriovenous malformation in a highly eloquent location. Drawing on institutional experience with a supervisory-control robotic system, a series of steps were devised to deliver a tubular retractor system to a deeply situated micro-arteriovenous malformation. The surgical footprint of this procedure was minimised along with the neurological morbidity. We hope that our contribution will be of assistance to others in integrating such systems given a similar clinical problem. CLINICAL PRESENTATION: A right-handed 9-year old girl presented to her local emergency department after a sudden onset of severe headache accompanied by vomiting. An intracranial haemorrhage centred in the right centrum semiovale with intraventricular extension was evident and she was transferred urgently to the regional paediatric neurosurgical centre, where an external ventricular drain (EVD) was sited. A digital subtraction angiogram demonstrated a small right hemispheric arteriovenous shunt irrigated by peripheral branches of the middle cerebral artery & a robotically facilitated parafasicular microsurgical approach was performed to disconnect the arteriovenous malformation. CONCLUSION: We describe the successful microsurgical in-situ disconnection of a deeply-situated, fistulous micro-AVM via a port system itself delivered directly to the target with a supervisory-control robotic system. This minimised the surgical disturbance along a relatively long white matter trajectory and demonstrates the feasibility of this approach for deeply located arteriovenous fistulae or fistulous AVMs.

16.
Stroke ; 53(9): 2770-2778, 2022 09.
Article in English | MEDLINE | ID: mdl-35506384

ABSTRACT

BACKGROUND: The impact on clinical outcomes of patient selection using perfusion imaging for endovascular thrombectomy (EVT) in patients with acute ischemic stroke presenting beyond 6 hours from onset remains undetermined in routine clinical practice. METHODS: Patients from a national stroke registry that underwent EVT selected with or without perfusion imaging (noncontrast computed tomography/computed tomography angiography) in the early (<6 hours) and late (6-24 hours) time windows, between October 2015 and March 2020, were compared. The primary outcome was the ordinal shift in the modified Rankin Scale score at hospital discharge. Other outcomes included functional independence (modified Rankin Scale score ≤2) and in-hospital mortality, symptomatic intracerebral hemorrhage, successful reperfusion (Thrombolysis in Cerebral Infarction score 2b-3), early neurological deterioration, futile recanalization (modified Rankin Scale score 4-6 despite successful reperfusion) and procedural time metrics. Multivariable analyses were performed, adjusted for age, sex, baseline stroke severity, prestroke disability, intravenous thrombolysis, mode of anesthesia (Model 1) and including EVT technique, balloon guide catheter, and center (Model 2). RESULTS: We included 4249 patients, 3203 in the early window (593 with perfusion versus 2610 without perfusion) and 1046 in the late window (378 with perfusion versus 668 without perfusion). Within the late window, patients with perfusion imaging had a shift towards better functional outcome at discharge compared with those without perfusion imaging (adjusted common odds ratio [OR], 1.45 [95% CI, 1.16-1.83]; P=0.001). There was no significant difference in functional independence (29.3% with perfusion versus 24.8% without; P=0.210) or in the safety outcome measures of symptomatic intracerebral hemorrhage (P=0.53) and in-hospital mortality (10.6% with perfusion versus 14.3% without; P=0.053). In the early time window, patients with perfusion imaging had significantly improved odds of functional outcome (adjusted common OR, 1.51 [95% CI, 1.28-1.78]; P=0.0001) and functional independence (41.6% versus 33.6%, adjusted OR, 1.31 [95% CI, 1.08-1.59]; P=0.006). Perfusion imaging was associated with lower odds of futile recanalization in both time windows (late: adjusted OR, 0.70 [95% CI, 0.50-0.97]; P=0.034; early: adjusted OR, 0.80 [95% CI, 0.65-0.99]; P=0.047). CONCLUSIONS: In this real-world study, acquisition of perfusion imaging for EVT was associated with improvement in functional disability in the early and late time windows compared with nonperfusion neuroimaging. These indirect comparisons should be interpreted with caution while awaiting confirmatory data from prospective randomized trials.


Subject(s)
Brain Ischemia , Endovascular Procedures , Ischemic Stroke , Stroke , Brain Ischemia/diagnostic imaging , Brain Ischemia/surgery , Cerebral Hemorrhage , Endovascular Procedures/methods , Humans , Perfusion Imaging , Prospective Studies , Stroke/diagnostic imaging , Stroke/surgery , Thrombectomy/methods , Treatment Outcome
17.
Neuroimage ; 249: 118871, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34995797

ABSTRACT

Convolutional neural networks (CNN) can accurately predict chronological age in healthy individuals from structural MRI brain scans. Potentially, these models could be applied during routine clinical examinations to detect deviations from healthy ageing, including early-stage neurodegeneration. This could have important implications for patient care, drug development, and optimising MRI data collection. However, existing brain-age models are typically optimised for scans which are not part of routine examinations (e.g., volumetric T1-weighted scans), generalise poorly (e.g., to data from different scanner vendors and hospitals etc.), or rely on computationally expensive pre-processing steps which limit real-time clinical utility. Here, we sought to develop a brain-age framework suitable for use during routine clinical head MRI examinations. Using a deep learning-based neuroradiology report classifier, we generated a dataset of 23,302 'radiologically normal for age' head MRI examinations from two large UK hospitals for model training and testing (age range = 18-95 years), and demonstrate fast (< 5 s), accurate (mean absolute error [MAE] < 4 years) age prediction from clinical-grade, minimally processed axial T2-weighted and axial diffusion-weighted scans, with generalisability between hospitals and scanner vendors (Δ MAE < 1 year). The clinical relevance of these brain-age predictions was tested using 228 patients whose MRIs were reported independently by neuroradiologists as showing atrophy 'excessive for age'. These patients had systematically higher brain-predicted age than chronological age (mean predicted age difference = +5.89 years, 'radiologically normal for age' mean predicted age difference = +0.05 years, p < 0.0001). Our brain-age framework demonstrates feasibility for use as a screening tool during routine hospital examinations to automatically detect older-appearing brains in real-time, with relevance for clinical decision-making and optimising patient pathways.


Subject(s)
Aging , Brain/diagnostic imaging , Human Development , Magnetic Resonance Imaging , Neuroimaging , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Aging/pathology , Aging/physiology , Deep Learning , Human Development/physiology , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Middle Aged , Neuroimaging/methods , Neuroimaging/standards , Young Adult
18.
Eur Radiol ; 32(1): 725-736, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34286375

ABSTRACT

OBJECTIVES: The purpose of this study was to build a deep learning model to derive labels from neuroradiology reports and assign these to the corresponding examinations, overcoming a bottleneck to computer vision model development. METHODS: Reference-standard labels were generated by a team of neuroradiologists for model training and evaluation. Three thousand examinations were labelled for the presence or absence of any abnormality by manually scrutinising the corresponding radiology reports ('reference-standard report labels'); a subset of these examinations (n = 250) were assigned 'reference-standard image labels' by interrogating the actual images. Separately, 2000 reports were labelled for the presence or absence of 7 specialised categories of abnormality (acute stroke, mass, atrophy, vascular abnormality, small vessel disease, white matter inflammation, encephalomalacia), with a subset of these examinations (n = 700) also assigned reference-standard image labels. A deep learning model was trained using labelled reports and validated in two ways: comparing predicted labels to (i) reference-standard report labels and (ii) reference-standard image labels. The area under the receiver operating characteristic curve (AUC-ROC) was used to quantify model performance. Accuracy, sensitivity, specificity, and F1 score were also calculated. RESULTS: Accurate classification (AUC-ROC > 0.95) was achieved for all categories when tested against reference-standard report labels. A drop in performance (ΔAUC-ROC > 0.02) was seen for three categories (atrophy, encephalomalacia, vascular) when tested against reference-standard image labels, highlighting discrepancies in the original reports. Once trained, the model assigned labels to 121,556 examinations in under 30 min. CONCLUSIONS: Our model accurately classifies head MRI examinations, enabling automated dataset labelling for downstream computer vision applications. KEY POINTS: • Deep learning is poised to revolutionise image recognition tasks in radiology; however, a barrier to clinical adoption is the difficulty of obtaining large labelled datasets for model training. • We demonstrate a deep learning model which can derive labels from neuroradiology reports and assign these to the corresponding examinations at scale, facilitating the development of downstream computer vision models. • We rigorously tested our model by comparing labels predicted on the basis of neuroradiology reports with two sets of reference-standard labels: (1) labels derived by manually scrutinising each radiology report and (2) labels derived by interrogating the actual images.


Subject(s)
Deep Learning , Area Under Curve , Humans , Magnetic Resonance Imaging , Radiography , Radiologists
19.
Eur Radiol ; 31(5): 2933-2943, 2021 May.
Article in English | MEDLINE | ID: mdl-33151394

ABSTRACT

OBJECTIVES: MRI remains the preferred imaging investigation for glioblastoma. Appropriate and timely neuroimaging in the follow-up period is considered to be important in making management decisions. There is a paucity of evidence-based information in current UK, European and international guidelines regarding the optimal timing and type of neuroimaging following initial neurosurgical treatment. This study assessed the current imaging practices amongst UK neuro-oncology centres, thus providing baseline data and informing future practice. METHODS: The lead neuro-oncologist, neuroradiologist and neurosurgeon from every UK neuro-oncology centre were invited to complete an online survey. Participants were asked about current and ideal imaging practices following initial treatment. RESULTS: Ninety-two participants from all 31 neuro-oncology centres completed the survey (100% response rate). Most centres routinely performed an early post-operative MRI (87%, 27/31), whereas only a third performed a pre-radiotherapy MRI (32%, 10/31). The number and timing of scans routinely performed during adjuvant TMZ treatment varied widely between centres. At the end of the adjuvant period, most centres performed an MRI (71%, 22/31), followed by monitoring scans at 3 monthly intervals (81%, 25/31). Additional short-interval imaging was carried out in cases of possible pseudoprogression in most centres (71%, 22/31). Routine use of advanced imaging was infrequent; however, the addition of advanced sequences was the most popular suggestion for ideal imaging practice, followed by changes in the timing of EPMRI. CONCLUSION: Variations in neuroimaging practices exist after initial glioblastoma treatment within the UK. Multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment. KEY POINTS: • Variations in imaging practices exist in the frequency, timing and type of interval neuroimaging after initial treatment of glioblastoma within the UK. • Large, multicentre, longitudinal, prospective trials are needed to define the optimal imaging schedule for assessment.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain Neoplasms/diagnostic imaging , Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Humans , Magnetic Resonance Imaging , Neuroimaging , Prospective Studies , United Kingdom
20.
Org Biomol Chem ; 19(27): 6147-6159, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34180937

ABSTRACT

LCMS-guided screening of a library of biosynthetically talented bacteria and fungi identified Streptomyces sp. MST- as a prolific producer of chlorinated metabolites. We isolated and characterised six new and nine reported compounds from MST-, belonging to three discrete classes - the depsipeptide svetamycins, the indolocarbazole borregomycins and the aromatic polyketide anthrabenzoxocinones. Following genome sequencing of MST-, we describe, for the first time, the svetamycin biosynthetic gene cluster (sve), its mosaic structure and its relationship to several distantly related gene clusters. Our analysis of the sve cluster suggested that the reported stereostructures of the svetamycins may be incorrect. This was confirmed by single-crystal X-ray diffraction analysis, allowing us to formally revise the absolute configurations of svetamycins A-G. We also show that the borregomycins and anthrabenzoxocinones are encoded by a single supercluster (bab) implicating superclusters as potential nucleation points for the evolution of biosynthetic gene clusters. These clusters highlight how individual enzymes and functional subclusters can be co-opted during the formation of biosynthetic gene clusters, providing a rare insight into the poorly understood mechanisms underpinning the evolution of chemical diversity.


Subject(s)
Streptomyces
SELECTION OF CITATIONS
SEARCH DETAIL