Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Indoor Air ; 32(1): e12969, 2022 01.
Article in English | MEDLINE | ID: mdl-34882845

ABSTRACT

Resuspension of dust from flooring is a major source of human exposure to microbial contaminants, but the persistence of viruses on dust and carpet and the contribution to human exposure are often unknown. The goal of this work is to determine viability of MS2 and Phi6 bacteriophages on cut carpet, looped carpet, and house dust both over time and after cleaning. Bacteriophages were nebulized onto carpet or dust in artificial saliva. Viability was measured at 0, 1, 2, 3, 4, 24, and 48 h and after cleaning by vacuum, steam, hot water extraction, and disinfection. MS2 bacteriophages showed slower viability decay rates in dust (-0.11 hr-1 ), cut carpet (-0.20 hr-1 ), and looped carpet (-0.09 hr-1 ) compared to Phi6 (-3.36 hr-1 , -1.57 hr-1 , and -0.20 hr-1 , respectively). Viable viral concentrations were reduced to below the detection limit for steam and disinfection for both MS2 and Phi6 (p < 0.05), while vacuuming and hot water extraction showed no significant changes in concentration from uncleaned carpet (p > 0.05). These results demonstrate that MS2 and Phi6 bacteriophages can remain viable in carpet and dust for several hours to days, and cleaning with heat and disinfectants may be more effective than standard vacuuming.


Subject(s)
Air Pollution, Indoor , Bacteriophages , Allergens , Dust , Floors and Floorcoverings , Humans
2.
Appl Microbiol Biotechnol ; 103(18): 7767-7782, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31388730

ABSTRACT

Exposure to bioaerosols can adversely influence human health through respiratory tract, eye, and skin irritation. Bioaerosol composition is unique on the International Space Station (ISS), where the size distribution of particles in the air differs from those on Earth. This is due to the lack of gravitational settling and sources of biological particles. However, we do not understand how microbes are influenced by particle size in this environment. We analyzed two types of samples from the ISS: (1) vacuum bag debris which had been sieved into five different size fractions and (2) passively collected particles on a tape substrate with a passive aerosol sampler. Using quantitative polymerase chain reaction (qPCR), the highest concentration of fungal spores was found in the 106-150 µm-sized sieved dust particles, while the highest concentration of bacterial cells was found in the 150-250 µm-sized sieved dust particles. Illumina MiSeq DNA sequencing revealed that particle size was associated with bacterial and fungal communities and statistically significant (p = 0.035, p = 0.036 respectively). Similar fungal and bacterial species were found within the passive aerosol sample and the sieved dust samples. The most abundant fungal species identified in the aerosol and sieved samples are commonly found in food and plant material. Abundant bacterial species were most associated with the oral microbiome and human upper respiratory tract. One limitation to this study was the suboptimal storage conditions of the sieved samples prior to analysis. Overall, our results indicate that microbial exposure in space may depend on particle size. This has implications for ventilation and filtration system design for future space vehicles and habitats.


Subject(s)
Aerosols/analysis , Air Microbiology , Dust/analysis , Microbiota , Particle Size , Spacecraft , Bacteria/genetics , Bacteria/isolation & purification , Environmental Monitoring , Humans , Internationality , Respiratory System/microbiology , Sequence Analysis, DNA , Spores, Fungal/genetics , Spores, Fungal/isolation & purification
3.
Build Environ ; 170: 1-16, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-32055099

ABSTRACT

Carpet and rugs currently represent about half of the United States flooring market and offer many benefits as a flooring type. How carpets influence our exposure to both microorganisms and chemicals in indoor environments has important health implications but is not well understood. The goal of this manuscript is to consolidate what is known about how carpet impacts indoor chemistry and microbiology, as well as to identify the important research gaps that remain. After describing the current use of carpet indoors, questions focus on five specific areas: 1) indoor chemistry, 2) indoor microbiology, 3) resuspension and exposure, 4) current practices and future needs, and 5) sustainability. Overall, it is clear that carpet can influence our exposures to particles and volatile compounds in the indoor environment by acting as a direct source, as a reservoir of environmental contaminants, and as a surface supporting chemical and biological transformations. However, the health implications of these processes are not well known, nor how cleaning practices could be optimized to minimize potential negative impacts. Current standards and recommendations focus largely on carpets as a primary source of chemicals and on limiting moisture that would support microbial growth. Future research should consider enhancing knowledge related to the impact of carpet in the indoor environment and how we might improve the design and maintenance of this common material to reduce our exposure to harmful contaminants while retaining the benefits to consumers.

4.
Sci Rep ; 14(1): 11858, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789478

ABSTRACT

Human occupied built environments are no longer confined to Earth. In fact, there have been humans living and working in low-Earth orbit on the International Space Station (ISS) since November 2000. With NASA's Artemis missions and the age of commercial space stations set to begin, more human-occupied spacecraft than ever will be in Earth's orbit and beyond. On Earth and in the ISS, microbes, especially fungi, can be found in dust and grow when unexpected, elevated moisture conditions occur. However, we do not yet know how indoor microbiomes in Earth-based homes and in the ISS differ due to their unique set of environmental conditions. Here we show that bacterial and fungal communities are different in dust collected from vacuum bags on Earth and the ISS, with Earth-based homes being more diverse (465 fungal OTUs and 237 bacterial ASVs) compared to the ISS (102 fungal OTUs and 102 bacterial ASVs). When dust from these locations were exposed to varying equilibrium relative humidity conditions (ERH), there were also significant fungal community composition changes as ERH and time elevated increased (Bray Curtis: R2 = 0.35, P = 0.001). These findings can inform future spacecraft design to promote healthy indoor microbiomes that support crew health, spacecraft integrity, and planetary protection.


Subject(s)
Air Pollution, Indoor , Dust , Fungi , Microbiota , Spacecraft , Dust/analysis , Fungi/isolation & purification , Fungi/classification , Humans , Air Pollution, Indoor/analysis , Built Environment , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Air Microbiology , Earth, Planet , Humidity
5.
mSystems ; 6(2)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33850045

ABSTRACT

Ongoing disease surveillance is a critical tool to mitigate viral outbreaks, especially during a pandemic. Environmental monitoring has significant promise even following widespread vaccination among high-risk populations. The goal of this work is to demonstrate molecular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monitoring in bulk floor dust and related samples as a proof of concept of a noninvasive environmental surveillance methodology for coronavirus disease 2019 (COVID-19) and potentially other viral diseases. Surface swab, passive sampler, and bulk floor dust samples were collected from the rooms of individuals positive for COVID-19, and SARS-CoV-2 was measured with quantitative reverse transcription-PCR (RT-qPCR) and two digital PCR (dPCR) methods. Bulk dust samples had a geometric mean concentration of 163 copies/mg of dust and ranged from nondetects to 23,049 copies/mg of dust detected using droplet digital PCR (ddPCR). An average of 89% of bulk dust samples were positive for the virus by the detection methods compared to 55% of surface swabs and fewer on the passive sampler (19% carpet, 29% polystyrene). In bulk dust, SARS-CoV-2 was detected in 76%, 93%, and 97% of samples measured by qPCR, chip-based dPCR, and droplet dPCR, respectively. Detectable viral RNA in the bulk vacuum bags did not measurably decay over 4 weeks, despite the application of a disinfectant before room cleaning. Future monitoring efforts should further evaluate RNA persistence and heterogeneity in dust. This study did not measure virus infectivity in dust or potential transmission associated with dust. Overall, this work demonstrates that bulk floor dust is a potentially useful matrix for long-term monitoring of viral disease in high-risk populations and buildings.IMPORTANCE Environmental surveillance to assess pathogen presence within a community is proving to be a critical tool to protect public health, and it is especially relevant during the ongoing COVID-19 pandemic. Importantly, environmental surveillance tools also allow for the detection of asymptomatic disease carriers and for routine monitoring of a large number of people as has been shown for SARS-CoV-2 wastewater monitoring. However, additional monitoring techniques are needed to screen for outbreaks in high-risk settings such as congregate care facilities. Here, we demonstrate that SARS-CoV-2 can be detected in bulk floor dust collected from rooms housing infected individuals. This analysis suggests that dust may be a useful and efficient matrix for routine surveillance of viral disease.

6.
Environ Sci Process Impacts ; 21(8): 1268-1279, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-30944918

ABSTRACT

Emerging investigator series: Phthalate esters are present at elevated concentrations in floor dust, and resuspension of dust represents a major source for human exposure to chemicals. Biodegradation of phthalates occurs in aquatic systems and soils but has not been demonstrated in house dust. The goal of this study was to quantify indoor phthalate ester degradation through both biotic and abiotic mechanisms. Worn carpet squares were embedded with dust and incubated for one to six weeks at equilibrium relative humidity (ERH) levels of 50, 80, 85, 90, 95, and 100%, and nine phthalates were measured. Removal was observed for DEHP, BBzP, DINP, DiDP, and DMP (p < 0.05) when incubated under elevated relative humidity conditions. Abiotic and biotic losses were examined separately using dust spiked with deuterated di(2-ethylhexyl)phthalate (d-DEHP) that was embedded in carpet and incubated at 100% ERH. Abiotic processes resulted in a 10.1% (±1.1%, standard error) to 69.6% (±4.8%) decrease in total d-DEHP after one week (p = 0.03) and a 27.2% (±1.4%) to 52.0% (±2.1%) decrease after three weeks (p = 0.008). Biodegradation resulted in a decrease in total d-DEHP after one week, ranging from 5.9% (±8.9%) to 8.5% (±1.7%) (p = 0.07) and a 1.7% (±3.9%) to 10.3% (±4.5%) decrease after three weeks (p = 0.044). Metatranscriptomic-based analysis indicates that fungi found in carpet dust express genes capable of degrading phthalate esters via various biochemical processes (including ß-oxidation and hydrolysis). Overall, these results support the hypothesis that phthalate losses in floor dust are due to a combination of abiotic and microbial degradation at ≥80% ERH.


Subject(s)
Air Pollution, Indoor/analysis , Dust/analysis , Floors and Floorcoverings , Humidity , Phthalic Acids/analysis , Biodegradation, Environmental , Deuterium/analysis , Esters , Fungi/metabolism , Humans , Hydrolysis , Phthalic Acids/metabolism
7.
Microbiome ; 6(1): 160, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30219094

ABSTRACT

Here, we summarize a symposium entitled "Microbiology of the Built Environment: Implications for Health and Design" that was presented at the National Council for Science and the Environment (NCSE) 17th National Conference and Global Forum in January 2017. We covered topics including indoor microbial exposures and childhood asthma, the influence of hospital design on neonatal development, the role of the microbiome in our premise (i.e., building) plumbing systems, antibiotic resistance, and quantitative microbial risk assessment. This symposium engaged the broader scientific and policy communities in a discussion to increase awareness of this critical research area and translate findings to practice.


Subject(s)
Air Pollution, Indoor/legislation & jurisprudence , Health/legislation & jurisprudence , Air Microbiology/standards , Air Pollution, Indoor/analysis , Asthma/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Construction Materials/microbiology , Construction Materials/standards , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Health/standards , Hospitals/standards , Humans , Policy
SELECTION OF CITATIONS
SEARCH DETAIL