Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Anim Genet ; 54(3): 375-388, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36756733

ABSTRACT

Computer vision system (CVSs) are effective tools that enable large-scale phenotyping with a low-cost and non-invasive method, which avoids animal stress. Economically important traits, such as rib and loin yield, are difficult to measure; therefore, the use of CVS is crucial to accurately predict several measures to allow their inclusion in breeding goals by indirect predictors. Therefore, this study aimed (1) to validate CVS by a deep learning approach and to automatically predict morphometric measurements in tambaqui and (2) to estimate genetic parameters for growth traits and body yield. Data from 365 individuals belonging to 11 full-sib families were evaluated. Seven growth traits were measured. After biometrics, each fish was processed in the following body regions: head, rib, loin, R + L (rib + loin). For deep learning image segmentation, we adopted a method based on the instance segmentation of the Mask R-CNN (Region-based Convolutional Neural Networks) model. Pearson's correlation values between measurements predicted manually and automatically by the CVS were high and positive. Regarding the classification performance, visible differences were detected in only about 3% of the images. Heritability estimates for growth and body yield traits ranged from low to high. The genetic correlations between the percentage of body parts and morphometric characteristics were favorable and highly correlated, except for percentage head, whose correlations were unfavorable. In conclusion, the CVS validated in this image dataset proved to be resilient and can be used for large-scale phenotyping in tambaqui. The weight of the rib and loin are traits under moderate genetic control and should respond to selection. In addition, standard length and pelvis length can be used as an efficient and indirect selection criterion for body yield in this tambaqui population.


Subject(s)
Characiformes , Deep Learning , Animals , Artificial Intelligence , Body Weights and Measures , Ribs
2.
BMC Genomics ; 21(1): 672, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32993504

ABSTRACT

BACKGROUND: Pacu (Piaractus mesopotamicus) is one of the most important Neotropical aquaculture species from South America. Disease outbreaks caused by Aeromonas hydrophila infection have been considered significant contributors to the declining levels of pacu production. The current implementation of genomic selection for disease resistance has been adopted as a powerful strategy for improvement in fish species. This study aimed to investigate the genetic architecture of resistance to A. hydrophila in pacu via Genome-Wide Association Study (GWAS), the identification of suggestive Quantitative Trait Loci (QTLs) and putative genes associated with this trait. The genetic data were obtained from 381 juvenile individuals belonging to 14 full-sibling families. An experimental challenge was performed to gain access to the levels of genetic variation for resistance against the bacteria using the following trait definitions: binary test survival (TS) and time of death (TD). RESULTS: The analyses of genetic parameters estimated moderate heritability (h2) for both resistance traits: 0.20 (± 0.09) for TS and 0.35 (± 0.15) for TD. A linkage map for pacu was developed to enable the GWAS, resulting in 27 linkage groups (LGs) with 17,453 mapped Single Nucleotide Polymorphisms (SNPs). The length of the LGs varied from 79.95 (LG14) to 137.01 (LG1) cM, with a total map length of 2755.60 cM. GWAS identified 22 putative QTLs associated to A. hydrophila resistance. They were distributed into 17 LGs, and were considered suggestive genomic regions explaining > 1% of the additive genetic variance (AGV) for the trait. Several candidate genes related to immune response were located close to the suggestive QTLs, such as tbk1, trim16, Il12rb2 and lyz2. CONCLUSION: This study describes the development of the first medium density linkage map for pacu, which will be used as a framework to study relevant traits to the production of this species. In addition, the resistance to A. hydrophila was found to be moderately heritable but with a polygenic architecture suggesting that genomic selection, instead of marker assisted selection, might be useful for efficiently improving resistance to one of the most problematic diseases that affects the South American aquaculture.


Subject(s)
Characiformes/genetics , Disease Resistance , Fish Diseases/genetics , Gram-Negative Bacterial Infections/genetics , Polymorphism, Single Nucleotide , Aeromonas hydrophila/pathogenicity , Animals , Characiformes/immunology , Characiformes/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Genetic Linkage , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Quantitative Trait Loci
3.
Sci Rep ; 11(1): 19289, 2021 09 29.
Article in English | MEDLINE | ID: mdl-34588599

ABSTRACT

Scarce genomic resources have limited the development of breeding programs for serrasalmid fish Colossoma macropomum (tambaqui) and Piaractus mesopotamicus (pacu), the key native freshwater fish species produced in South America. The main objectives of this study were to design a dense SNP array for this fish group and to validate its performance on farmed populations from several locations in South America. Using multiple approaches based on different populations of tambaqui and pacu, a final list of 29,575 and 29,612 putative SNPs was selected, respectively, to print an Axiom AFFYMETRIX (THERMOFISHER) SerraSNP array. After validation, 74.17% (n = 21,963) and 71.25% (n = 21,072) of SNPs were classified as polymorphic variants in pacu and tambaqui, respectively. Most of the SNPs segregated within each population ranging from 14,199 to 19,856 in pacu; and from 15,075 to 20,380 in tambaqui. Our results indicate high levels of genetic diversity and clustered samples according to their hatchery origin. The developed SerraSNP array represents a valuable genomic tool approaching in-depth genetic studies for these species.


Subject(s)
Aquaculture/methods , Breeding/methods , Characiformes/genetics , Sequence Analysis, DNA/methods , Animals , Polymorphism, Single Nucleotide , South America
SELECTION OF CITATIONS
SEARCH DETAIL