Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Mol Phylogenet Evol ; 123: 16-25, 2018 06.
Article in English | MEDLINE | ID: mdl-29448063

ABSTRACT

The Malay Archipelago and the tropical South Pacific (hereafter the Indo-Pacific region) are considered biodiversity hotspots, yet a general understanding of the origins and diversification of species-rich groups in the region remains elusive. We aimed to test hypotheses for the evolutionary processes driving insect species diversity in the Indo-Pacific using a higher-level and comprehensive phylogenetic hypothesis for an ant clade consisting of seven genera. We estimated divergence times and reconstructed the biogeographical history of ant species in the Prenolepis genus-group (Formicidae: Formicinae: Lasiini). We used a fossil-calibrated phylogeny to infer ancestral geographical ranges utilizing a biogeographic model that includes founder-event speciation. Ancestral state reconstructions of the ants' ecological preferences, and diversification rates were estimated for selected Indo-Pacific clades. Overall, we report that faunal interchange between Asia and Australia has occurred since at least 20-25 Ma, and early dispersal to the Fijian Basin happened during the early and mid-Miocene (ca. 10-20 Ma). Differences in diversification rates across Indo-Pacific clades may be related to ecological preference breadth, which in turn may have facilitated geographical range expansions. Ancient dispersal routes suggested by our results agree with the palaeogeography of the region. For this particular group of ants, the rapid orogenesis in New Guinea and possibly subsequent ecological shifts may have promoted their rapid diversification and widespread distribution across the Indo-Pacific.


Subject(s)
Biodiversity , Phylogeography , Animals , Ants , Asia , Australia , Calibration , Fossils , Geography , Indonesia , New Guinea , Phylogeny , Species Specificity , Time Factors
2.
Cryo Letters ; 30(5): 312-9, 2009.
Article in English | MEDLINE | ID: mdl-19946654

ABSTRACT

Expression of heat shock proteins has been proposed as an underlying mechanism of increased cold tolerance in insects exposed to fluctuating thermal regimes (FTRs) in comparison to constant low temperatures (CLTs). We found that the levels of Pahsp70 mRNA increase by up to 3 orders in the linden bugs, Pyrrhocoris apterus exposed to FTR -5 degree C (22h) and 25 degree C (2h). The 2h-long warm pulses, however, were not sufficient for accumulation of PaHSP70 protein and thus no significant difference in expression of PaHSP70 protein was detected between FTR and CLT regimes. Hence, we conclude that the accumulation of PaHSP70 protein is not the mechanism underlying the increased cold tolerance in P. apterus at the particular FTR used in this study. The relevance of some other possible mechanisms is discussed.


Subject(s)
Cold Temperature , HSP70 Heat-Shock Proteins/physiology , Insecta/physiology , Adaptation, Physiological/physiology , Animals , Body Temperature Regulation/physiology , HSP70 Heat-Shock Proteins/genetics , Male , RNA, Messenger/metabolism
3.
Zookeys ; (472): 43-57, 2015.
Article in English | MEDLINE | ID: mdl-25632248

ABSTRACT

The present checklist of ants (Hymenoptera: Formicidae) of Ambon is the first comprehensive overview of ant species recorded on the island during the last 150 years. The species list is based on literature and museum collections' records combined with data from our field survey in 2010. In total, there are 74 ant species and subspecies representing 34 genera and six subfamilies known from Ambon. Five of the species found in undisturbed forest were exotic and indicate the overall habitat degradation on the island. The largest proportion of Ambon ant fauna are species with affinities to the Oriental region and species of Oriental-Austro-Melanesian origin. At least 20% of the species are regional endemics. In comparison to other islands in the region, the Ambon fauna seems more diverse and better sampled; however it is clear that a large part of it still remains to be described.

4.
PLoS One ; 4(2): e4546, 2009.
Article in English | MEDLINE | ID: mdl-19229329

ABSTRACT

BACKGROUND: The Pyrrhocoris apterus (Insecta: Heteroptera) adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps) and the role of Hsps during repair of heat- and cold-induced injury. PRINCIPAL FINDINGS: The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and cognate forms (PaHsc70) were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR) and corresponding protein (Western blotting) were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. CONCLUSION: Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus.


Subject(s)
Acclimatization/genetics , HSP70 Heat-Shock Proteins/physiology , Insect Proteins/physiology , Insecta/physiology , Animals , Cold Climate , HSP70 Heat-Shock Proteins/genetics , Heat-Shock Response , RNA, Messenger/analysis , Temperature , Up-Regulation/genetics , Wound Healing/genetics
SELECTION OF CITATIONS
SEARCH DETAIL