Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal
Affiliation country
Publication year range
1.
Cell ; 149(3): 538-53, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22502866

ABSTRACT

Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1 resulted in extensive 3' untranslated region shortening. Messenger RNA transcription, stability analyses, and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites (CSs) as the underlying mechanism. Using Cyclin D1 as a test case, we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression. Triplet-repeat expansion in PABPN1 (trePABPN1) causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD). The expression of trePABPN1 in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage, linked to binding to endogenous PABPN1 and its sequestration in nuclear aggregates. Our results elucidate a novel function for PABPN1 as a suppressor of APA.


Subject(s)
Poly(A)-Binding Protein II/metabolism , Polyadenylation , RNA Processing, Post-Transcriptional , 3' Untranslated Regions , Animals , Base Sequence , Cell Line , Gene Expression Regulation , Humans , Mice , Molecular Sequence Data , Muscular Dystrophy, Oculopharyngeal/genetics , Muscular Dystrophy, Oculopharyngeal/metabolism , Mutation , Poly(A)-Binding Protein II/genetics , RNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL