ABSTRACT
A surge in chikungunya was observed during 2020-21 in Pune district of Maharashtra, India. Whole genome sequencing and phylogenetic analysis of 21 samples/sequences revealed them as Indian ocean lineage of East Central South African genotype. Two distinct sequence clusters were found to circulate during 2020-21; one with E1:K211E and E2:V264A mutations while the other had E1:I317V mutation along with E1:K211E and E2: V264A mutations. The former, the predominant cluster (n = 18), clustered with chikungunya virus (CHIKV) strains of pre 2014 period while the latter (n = 3) clustered with 2016-2018 period Indian strains. Though E1: A226V was not detected in any of the 21 sequences, several unique mutations were detected in the strains which might have played key roles in the enhanced virus transmission during the period. The study highlights parallel evolution, introduction from the neighboring regions and cocirculation of two sequence clusters of CHIKV in Pune. The complete genome data can be useful to determine how the circulating strains differ from candidate vaccines and might help to predict the protective efficacy of chikungunya vaccine candidates.
Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , Chikungunya virus/genetics , Chikungunya Fever/epidemiology , Phylogeny , India/epidemiology , Disease Outbreaks , GenomicsABSTRACT
BACKGROUND: The burden of dengue infection needs to be monitored along with tracking of the changes in dengue virus (DENV) transmission intensity for vaccine introduction decisions. METHODS: The seroprevalence of dengue was investigated in Pune City in India, in early 2019 using 1654 sera from apparently healthy human participants enrolled randomly through multistage cluster sampling. We used 797 retrospective human sera from late 2009 for comparison. All sera were assessed for the presence of dengue-specific IgG antibodies. A subset (n = 230) was tested for serotype-specific plaque reduction-neutralizing antibodies against all four serotypes. RESULTS: The dengue IgG seroprevalence of 62.9% (95% CI 59.4-66.1) in 2009 increased to 88.4% (95% CI 86.8-89.8) in 2019. Age-stratified dengue seroprevalence revealed a gradual increase in IgG seropositivity from 70.1% in 0-9 years to 85.0% in 10-19 years. The annual probability of dengue infection estimated as a force of infection was 4.1 (95% CI 3.8-4.5) in 2009, which increased to 10.9 (95% CI 10.2-11.6) in 2019. Analysis of dengue serotype-specific neutralizing antibodies revealed DENV-3 as the dominant serotype. The age of exposure to at least one dengue serotype was reduced in 2019 over 2009. CONCLUSIONS: There was a significant increase in the intensity of dengue virus transmission in Pune City over the decade. Since over 85% of the participants above nine years of age had exposure to DENV by 2019, dengue vaccine introduction can be considered. Moreover, such repeated serosurveys in different regions might inform about the readiness of the population for dengue vaccination.
ABSTRACT
Japanese encephalitis (JE), an acute encephalitis syndrome disease caused by infection with JE virus (JEV), is an important mosquito borne disease in developing countries. The clinical outcomes of JEV infection show inter individual differences. Only in a minor percent of the infected subjects, the disease progresses into acute encephalitis syndrome. Single nucleotide polymorphisms in the host immune response related genes are known to affect susceptibility to JE. In the present study, 238 JE cases and 405 healthy controls (HCs) without any known history of encephalitis were investigated for SNPs in the CD209 MX1, TLR3, MMP9, TNFA and IFNG genes which are important in the immune response against JEV by PCR based methods. The results revealed higher frequencies of heterozygous genotypes of CD209 rs4804803, MMP9 rs17576, TNFA rs1800629 and IFNG rs2430561 in JE cases compared to HCs. These SNPs were associated with JE in an over-dominant genetic model (Odds ratio with 95% CI 1.51 (1.09-2.10) for CD209 rs4804803, 1.52 (1.09-2.11) for MMP9 rs17576, and 1.55 (1.12-2.15) for IFNG rs2430561). The association of G/A genotype of TNFA rs1800629 with JE was confirmed in a larger sample size. The results suggest the association of CD209 rs4804803, MMP9 rs17576, IFNG rs2430561 and TNFA rs1800629 polymorphisms with susceptibility to JE.
Subject(s)
Encephalitis, Japanese/genetics , Cell Adhesion Molecules/genetics , Child , Child, Preschool , Encephalitis Virus, Japanese/pathogenicity , Encephalitis, Japanese/virology , Female , Genetic Predisposition to Disease/genetics , Genotype , Humans , India/epidemiology , Interferon-gamma/genetics , Lectins, C-Type/genetics , Male , Matrix Metalloproteinase 9/genetics , Odds Ratio , Polymorphism, Single Nucleotide/genetics , Receptors, Cell Surface/genetics , Tumor Necrosis Factor-alpha/geneticsABSTRACT
Chikungunya virus (CHIKV) is an arthropod-borne virus capable of causing large outbreaks. We aimed to determine the decadal change in the extent of chikungunya virus infection from 2009 to 2019. We implemented a prospective cross-sectional survey in Pune City using a 30-cluster approach with probability-proportion-to-size (PPS) sampling, with blood samples collected from 1654 participants in early 2019. The study also included an additional 799 blood samples from an earlier serosurvey in late 2009. The samples were tested by an in-house anti-CHIKV IgG ELISA assay. The overall seroprevalence in 2019 was 53.2% (95% CI 50.7−55.6) as against 8.5% (95% CI 6.5−10.4) in 2009. A fivefold increase in seroprevalence was observed in a decade (p < 0.00001). The seroprevalence increased significantly with age; however, it did not differ between genders. Modeling of age-stratified seroprevalence data from 2019 coincided with a recent outbreak in 2016 followed by the low-level circulation. The mean estimated force of infection during the outbreak was 35.8% (95% CI 2.9−41.2), and it was 1.2% after the outbreak. To conclude, the study reports a fivefold increase in the seroprevalence of chikungunya infection over a decade in Pune City. The modeling approach considering intermittent outbreaks with continuous low-level circulation was a better fit and coincided with a recent outbreak reported in 2016. Community engagement and effective vector control measures are needed to avert future chikungunya outbreaks.
Subject(s)
Chikungunya Fever , Chikungunya Fever/epidemiology , Cross-Sectional Studies , Female , Humans , India/epidemiology , Male , Prospective Studies , Seroepidemiologic StudiesABSTRACT
BACKGROUND: In July 2021, an outbreak of chikungunya virus (CHIKV) was reported in a rural region of Maharashtra state, India. METHODS: Serum samples of symptomatic cases (n=33) were screened for dengue virus (DENV), CHIKV and Zika virus (ZIKV) by molecular and serological assays. RESULTS: The first case of ZIKV infection from Maharashtra was detected and confirmed by molecular and serological assays. Complete genome sequencing revealed that the ZIKV sequence belongs to the Asian genotype and had a closer homology with pre-epidemic strains present before 2007. CONCLUSIONS: ZIKV surveillance needs to be strengthened in the regions experiencing dengue and chikungunya outbreaks.