Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Circulation ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695173

ABSTRACT

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.

2.
Am J Respir Crit Care Med ; 209(11): 1376-1391, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38261723

ABSTRACT

Rationale: The ubiquitous polyamine spermidine is essential for cell survival and proliferation. One important function of spermidine is to serve as a substrate for hypusination, a posttranslational modification process that occurs exclusively on eukaryotic translation factor 5A (eIF5A) and ensures efficient translation of various gene products. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive obliteration of the small pulmonary arteries (PAs) caused by excessive proliferation of PA smooth muscle cells (PASMCs) and suppressed apoptosis. Objectives: To characterize the role of hypusine signaling in PAH. Methods: Molecular, genetic, and pharmacological approaches were used both in vitro and in vivo to investigate the role of hypusine signaling in pulmonary vascular remodeling. Measurements and Main Results: Hypusine forming enzymes-deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH)-and hypusinated eukaryotic translation factor 5A are overexpressed in distal PAs and isolated PASMCs from PAH patients and animal models. In vitro, inhibition of DHPS using N1-guanyl-1,7-diaminoheptane or shRNA resulted in a decrease in PAH-PASMC resistance to apoptosis and proliferation. In vivo, inactivation of one allele of Dhps targeted to smooth muscle cells alleviates PAH in mice, and its pharmacological inhibition significantly decreases pulmonary vascular remodeling and improves hemodynamics and cardiac function in two rat models of established PAH. With mass spectrometry, hypusine signaling is shown to promote the expression of a broad array of proteins involved in oxidative phosphorylation, thus supporting the bioenergetic requirements of cell survival and proliferation. Conclusions: These findings support inhibiting hypusine signaling as a potential treatment for PAH.


Subject(s)
Pulmonary Arterial Hypertension , Signal Transduction , Vascular Remodeling , Animals , Vascular Remodeling/drug effects , Vascular Remodeling/physiology , Rats , Humans , Pulmonary Arterial Hypertension/physiopathology , Pulmonary Arterial Hypertension/drug therapy , Pulmonary Arterial Hypertension/metabolism , Male , Disease Models, Animal , Pulmonary Artery/physiopathology , Pulmonary Artery/drug effects , Mice , Peptide Initiation Factors/metabolism , Peptide Initiation Factors/genetics , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Eukaryotic Translation Initiation Factor 5A , Cell Proliferation/drug effects , Oxidoreductases Acting on CH-NH Group Donors/genetics , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/metabolism , Lysine/analogs & derivatives
3.
Circ Res ; 130(9): 1466-1486, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35482834

ABSTRACT

Pulmonary hypertension (PH) describes heterogeneous population of patients with a mean pulmonary arterial pressure >20 mm Hg. Rarely, PH presents as a primary disorder but is more commonly part of a complex phenotype associated with comorbidities. Regardless of the cause, PH reduces life expectancy and impacts quality of life. The current clinical classification divides PH into 1 of 5 diagnostic groups to assign treatment. There are currently no pharmacological cures for any form of PH. Animal models are essential to help decipher the molecular mechanisms underlying the disease, to assign genotype-phenotype relationships to help identify new therapeutic targets, and for clinical translation to assess the mechanism of action and putative efficacy of new therapies. However, limitations inherent of all animal models of disease limit the ability of any single model to fully recapitulate complex human disease. Within the PH community, we are often critical of animal models due to the perceived low success upon clinical translation of new drugs. In this review, we describe the characteristics, advantages, and disadvantages of existing animal models developed to gain insight into the molecular and pathological mechanisms and test new therapeutics, focusing on adult forms of PH from groups 1 to 3. We also discuss areas of improvement for animal models with approaches combining several hits to better reflect the clinical situation and elevate their translational value.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Animals , Disease Models, Animal , Heart Failure/complications , Heart Failure/genetics , Humans , Hypertension, Pulmonary/drug therapy , Quality of Life
4.
Circ Res ; 130(5): 760-778, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35124974

ABSTRACT

RATIONALE: The MSTs (mammalian Ste20-like kinases) 1/2 are members of the HIPPO pathway that act as growth suppressors in adult proliferative diseases. Pulmonary arterial hypertension (PAH) manifests by increased proliferation and survival of pulmonary vascular cells in small PAs, pulmonary vascular remodeling, and the rise of pulmonary arterial pressure. The role of MST1/2 in PAH is currently unknown. OBJECTIVE: To investigate the roles and mechanisms of the action of MST1 and MST2 in PAH. METHODS AND RESULTS: Using early-passage pulmonary vascular cells from PAH and nondiseased lungs and mice with smooth muscle-specific tamoxifen-inducible Mst1/2 knockdown, we found that, in contrast to canonical antiproliferative/proapoptotic roles, MST1/2 act as proproliferative/prosurvival molecules in human PAH pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts and support established pulmonary vascular remodeling and pulmonary hypertension in mice with SU5416/hypoxia-induced pulmonary hypertension. By using unbiased proteomic analysis, gain- and loss-of function approaches, and pharmacological inhibition of MST1/2 kinase activity by XMU-MP-1, we next evaluated mechanisms of regulation and function of MST1/2 in PAH pulmonary vascular cells. We found that, in PAH pulmonary arterial adventitial fibroblasts, the proproliferative function of MST1/2 is caused by IL-6-dependent MST1/2 overexpression, which induces PSMC6-dependent downregulation of forkhead homeobox type O 3 and hyperproliferation. In PAH pulmonary arterial vascular smooth muscle cells, MST1/2 acted via forming a disease-specific interaction with BUB3 and supported ECM (extracellular matrix)- and USP10-dependent BUB3 accumulation, upregulation of Akt-mTORC1, cell proliferation, and survival. Supporting our in vitro observations, smooth muscle-specific Mst1/2 knockdown halted upregulation of Akt-mTORC1 in small muscular PAs of mice with SU5416/hypoxia-induced pulmonary hypertension. CONCLUSIONS: Together, this study describes a novel proproliferative/prosurvival role of MST1/2 in PAH pulmonary vasculature, provides a novel mechanistic link from MST1/2 via BUB3 and forkhead homeobox type O to the abnormal proliferation and survival of pulmonary arterial vascular smooth muscle cells and pulmonary arterial adventitial fibroblasts, remodeling and pulmonary hypertension, and suggests new target pathways for therapeutic intervention.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Forkhead Transcription Factors/metabolism , Hypertension, Pulmonary , Poly-ADP-Ribose Binding Proteins/metabolism , Pulmonary Arterial Hypertension , Animals , Cell Proliferation , Cells, Cultured , Hypertension, Pulmonary/metabolism , Hypoxia/metabolism , Mammals , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Vascular Remodeling/physiology
5.
Am J Respir Cell Mol Biol ; 68(5): 537-550, 2023 05.
Article in English | MEDLINE | ID: mdl-36724371

ABSTRACT

Pulmonary arterial hypertension (PAH) is characterized by progressive vascular remodeling of small pulmonary arteries (PAs) causing sustained elevation of PA pressure, right ventricular failure, and death. Similar to cancer cells, PA smooth muscle cells (PASMCs), which play a key role in pulmonary vascular remodeling, have adopted multiple mechanisms to sustain their survival and proliferation in the presence of stress. The histone methyltransferase G9a and its partner protein GLP (G9a-like protein) have been shown to exert oncogenic effects and to serve as a buffer against an exaggerated transcriptional response. Therefore, we hypothesized that upregulation of G9a and GLP in PAH plays a pivotal role in pulmonary vascular remodeling by maintaining the abnormal phenotype of PAH-PASMCs. We found that G9a is increased in PASMCs from patients with PAH as well as in remodeled PAs from animal models. Pharmacological inhibition of G9a/GLP activity using BIX01294 and UNC0642 significantly reduced the prosurvival and proproliferative potentials of cultured PAH-PASMCs. Using RNA sequencing, further exploration revealed that G9a/GLP promotes extracellular matrix production and affords protection against the negative effects of an overactive stress response. Finally, we found that therapeutic treatment with BIX01294 reduced pulmonary vascular remodeling and lowered mean PA pressure in fawn-hooded rats. Treatment of Sugen/hypoxia-challenged mice with BIX01294 also improved pulmonary hemodynamics and right ventricular function. In conclusion, these findings indicate that G9a/GLP inhibition may represent a new therapeutic approach in PAH.


Subject(s)
Pulmonary Arterial Hypertension , Rats , Mice , Animals , Pulmonary Arterial Hypertension/drug therapy , Vascular Remodeling , Cell Proliferation , Familial Primary Pulmonary Hypertension , Disease Models, Animal , Myocytes, Smooth Muscle , Pulmonary Artery
6.
Thorax ; 77(3): 247-258, 2022 03.
Article in English | MEDLINE | ID: mdl-34226205

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterised by exuberant tissue remodelling and associated with high unmet medical needs. Outcomes are even worse when IPF results in secondary pulmonary hypertension (PH). Importantly, exaggerated resistance to cell death, excessive proliferation and enhanced synthetic capacity are key endophenotypes of both fibroblasts and pulmonary artery smooth muscle cells, suggesting shared molecular pathways. Under persistent injury, sustained activation of the DNA damage response (DDR) is integral to the preservation of cells survival and their capacity to proliferate. Checkpoint kinases 1 and 2 (CHK1/2) are key components of the DDR. The objective of this study was to assess the role of CHK1/2 in the development and progression of IPF and IPF+PH. METHODS AND RESULTS: Increased expression of DNA damage markers and CHK1/2 were observed in lungs, remodelled pulmonary arteries and isolated fibroblasts from IPF patients and animal models. Blockade of CHK1/2 expression or activity-induced DNA damage overload and reverted the apoptosis-resistant and fibroproliferative phenotype of disease cells. Moreover, inhibition of CHK1/2 was sufficient to interfere with transforming growth factor beta 1-mediated fibroblast activation. Importantly, pharmacological inhibition of CHK1/2 using LY2606368 attenuated fibrosis and pulmonary vascular remodelling leading to improvement in respiratory mechanics and haemodynamic parameters in two animal models mimicking IPF and IPF+PH. CONCLUSION: This study identifies CHK1/2 as key regulators of lung fibrosis and provides a proof of principle for CHK1/2 inhibition as a potential novel therapeutic option for IPF and IPF+PH.


Subject(s)
Hypertension, Pulmonary , Idiopathic Pulmonary Fibrosis , Animals , Fibroblasts/metabolism , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Myocytes, Smooth Muscle/metabolism
7.
Am J Respir Crit Care Med ; 203(5): 614-627, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33021405

ABSTRACT

Rationale: Pulmonary arterial hypertension (PAH) is a life-threatening condition characterized by abnormally elevated pulmonary pressures and right ventricular failure. Excessive proliferation and resistance to apoptosis of pulmonary artery smooth muscle cells (PASMCs) is one of the most important drivers of vascular remodeling in PAH, for which available treatments have limited effectiveness.Objectives: To gain insights into the mechanisms leading to the development of the disease and identify new actionable targets.Methods: Protein expression profiling was conducted by two-dimensional liquid chromatography coupled to tandem mass spectrometry in isolated PASMCs from controls and patients with PAH. Multiple molecular, biochemical, and pharmacologic approaches were used to decipher the role of NUDT1 (nudrix hyrolase 1) in PAH.Measurements and Main Results: Increased expression of the detoxifying DNA enzyme NUDT1 was detected in cells and tissues from patients with PAH and animal models. In vitro, molecular or pharmacological inhibition of NUDT1 in PAH-PASMCs induced accumulation of oxidized nucleotides in the DNA, irresolvable DNA damage (comet assay), disruption of cellular bioenergetics (Seahorse), and cell death (terminal deoxynucleotidyl transferase dUTP nick end labeling assay). In two animal models with established PAH (i.e., monocrotaline and Sugen/hypoxia-treated rats), pharmacological inhibition of NUDT1 using (S)-Crizotinib significantly decreased pulmonary vascular remodeling and improved hemodynamics and cardiac function.Conclusions: Our results indicate that, by overexpressing NUDT1, PAH-PASMCs hijack persistent oxidative stress in preventing incorporation of oxidized nucleotides into DNA, thus allowing the cell to escape apoptosis and proliferate. Given that NUDT1 inhibitors are under clinical investigation for cancer, they may represent a new therapeutic option for PAH.


Subject(s)
DNA Repair Enzymes/genetics , DNA/metabolism , Oxidative Stress/genetics , Phosphoric Monoester Hydrolases/genetics , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Vascular Remodeling/genetics , 8-Hydroxy-2'-Deoxyguanosine/metabolism , Adult , Aged , Animals , Apoptosis/genetics , Blotting, Western , Case-Control Studies , Cell Proliferation/genetics , Chromatography, Liquid , Comet Assay , DNA Repair Enzymes/antagonists & inhibitors , DNA Repair Enzymes/metabolism , Disease Models, Animal , Female , Forkhead Box Protein M1/metabolism , Humans , In Vitro Techniques , Male , Middle Aged , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Oxidation-Reduction , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Phosphoric Monoester Hydrolases/metabolism , Pulmonary Arterial Hypertension/metabolism , Pyrophosphatases/antagonists & inhibitors , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , RNA, Messenger/metabolism , Rats , Tandem Mass Spectrometry , Up-Regulation
8.
Circulation ; 142(15): 1464-1484, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32698630

ABSTRACT

BACKGROUND: Right ventricular (RV) function is the major determinant for both functional capacity and survival in patients with pulmonary arterial hypertension (PAH). Despite the recognized clinical importance of preserving RV function, the subcellular mechanisms that govern the transition from a compensated to a decompensated state remain poorly understood and as a consequence there are no clinically established treatments for RV failure and a paucity of clinically useful biomarkers. Accumulating evidence indicates that long noncoding RNAs are powerful regulators of cardiac development and disease. Nonetheless, their implication in adverse RV remodeling in PAH is unknown. METHODS: Expression of the long noncoding RNA H19 was assessed by quantitative PCR in plasma and RV from patients categorized as control RV, compensated RV or decompensated RV based on clinical history and cardiac index. The impact of H19 suppression using GapmeR was explored in 2 rat models mimicking RV failure, namely the monocrotaline and pulmonary artery banding. Echocardiographic, hemodynamic, histological, and biochemical analyses were conducted. In vitro gain- and loss-of-function experiments were performed in rat cardiomyocytes. RESULTS: We demonstrated that H19 is upregulated in decompensated RV from PAH patients and correlates with RV hypertrophy and fibrosis. Similar findings were observed in monocrotaline and pulmonary artery banding rats. We found that silencing H19 limits pathological RV hypertrophy, fibrosis and capillary rarefaction, thus preserving RV function in monocrotaline and pulmonary artery banding rats without affecting pulmonary vascular remodeling. This cardioprotective effect was accompanied by E2F transcription factor 1-mediated upregulation of enhancer of zeste homolog 2. In vitro, knockdown of H19 suppressed cardiomyocyte hypertrophy induced by phenylephrine, while its overexpression has the opposite effect. Finally, we demonstrated that circulating H19 levels in plasma discriminate PAH patients from controls, correlate with RV function and predict long-term survival in 2 independent idiopathic PAH cohorts. Moreover, H19 levels delineate subgroups of patients with differentiated prognosis when combined with the NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels or the risk score proposed by both REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) and the 2015 European Pulmonary Hypertension Guidelines. CONCLUSIONS: Our findings identify H19 as a new therapeutic target to impede the development of maladaptive RV remodeling and a promising biomarker of PAH severity and prognosis.


Subject(s)
Heart Failure/metabolism , Pulmonary Arterial Hypertension/metabolism , RNA, Long Noncoding/metabolism , Vascular Remodeling , Ventricular Dysfunction, Right/metabolism , Animals , Biomarkers/metabolism , Heart Failure/mortality , Heart Failure/pathology , Humans , Natriuretic Peptide, Brain/metabolism , Peptide Fragments/metabolism , Pulmonary Arterial Hypertension/mortality , Pulmonary Arterial Hypertension/pathology , Rats , Ventricular Dysfunction, Right/mortality , Ventricular Dysfunction, Right/pathology
9.
Circ Res ; 125(4): 449-466, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31154939

ABSTRACT

RATIONALE: Pulmonary hypertension (PH) due to left heart disease (LHD), or group 2 PH, is the most prevalent form of PH worldwide. PH due to LHD is often associated with metabolic syndrome (MetS). In 12% to 13% of cases, patients with PH due to LHD display vascular remodeling of pulmonary arteries (PAs) associated with poor prognosis. Unfortunately, the underlying mechanisms remain unknown; PH-targeted therapies for this group are nonexistent, and the development of a new preclinical model is crucial. Among the numerous pathways dysregulated in MetS, inflammation plays also a critical role in both PH and vascular remodeling. OBJECTIVE: We hypothesized that MetS and inflammation may trigger the development of vascular remodeling in group 2 PH. METHODS AND RESULTS: Using supracoronary aortic banding, we induced diastolic dysfunction in rats. Then we induced MetS by a combination of high-fat diet and olanzapine treatment. We used metformin treatment and anti-IL-6 (interleukin-6) antibodies to inhibit the IL-6 pathway. Compared with sham conditions, only supracoronary aortic banding+MetS rats developed precapillary PH, as measured by both echocardiography and right/left heart catheterization. PH in supracoronary aortic banding+MetS was associated with macrophage accumulation and increased IL-6 production in lung. PH was also associated with STAT3 (signal transducer and activator of transcription 3) activation and increased proliferation of PA smooth muscle cells, which contributes to remodeling of distal PA. We reported macrophage accumulation, increased IL-6 levels, and STAT3 activation in the lung of group 2 PH patients. In vitro, IL-6 activates STAT3 and induces human PA smooth muscle cell proliferation. Metformin treatment decreased inflammation, IL-6 levels, STAT3 activation, and human PA smooth muscle cell proliferation. In vivo, in the supracoronary aortic banding+MetS animals, reducing IL-6, either by anti-IL-6 antibody or metformin treatment, reversed pulmonary vascular remodeling and improve PH due to LHD. CONCLUSIONS: We developed a new preclinical model of group 2 PH by combining MetS with LHD. We showed that MetS exacerbates group 2 PH. We provided evidence for the importance of the IL-6-STAT3 pathway in our experimental model of group 2 PH and human patients.


Subject(s)
Disease Models, Animal , Hypertension, Pulmonary/pathology , Metabolic Syndrome/complications , Ventricular Dysfunction/complications , Animals , Cells, Cultured , Diet, High-Fat/adverse effects , Humans , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Macrophages/metabolism , Male , Metabolic Syndrome/etiology , Olanzapine/toxicity , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats , Rats, Wistar , Vascular Remodeling
10.
Arterioscler Thromb Vasc Biol ; 40(3): 783-801, 2020 03.
Article in English | MEDLINE | ID: mdl-31969012

ABSTRACT

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a fatal disease characterized by the narrowing of pulmonary arteries (PAs). It is now established that this phenotype is associated with enhanced PA smooth muscle cells (PASMCs) proliferation and suppressed apoptosis. This phenotype is sustained in part by the activation of several DNA repair pathways allowing PASMCs to survive despite the unfavorable environmental conditions. PIM1 (Moloney murine leukemia provirus integration site) is an oncoprotein upregulated in PAH and involved in many prosurvival pathways, including DNA repair. The objective of this study was to demonstrate the implication of PIM1 in the DNA damage response and the beneficial effect of its inhibition by pharmacological inhibitors in human PAH-PASMCs and in rat PAH models. Approach and Results: We found in vitro that PIM1 inhibition by either SGI-1776, TP-3654, siRNA (silencer RNA) decreased the phosphorylation of its newly identified direct target KU70 (lupus Ku autoantigen protein p70) resulting in the inhibition of double-strand break repair (Comet Assay) by the nonhomologous end-joining as well as reduction of PAH-PASMCs proliferation (Ki67-positive cells) and resistance to apoptosis (Annexin V positive cells) of PAH-PASMCs. In vivo, SGI-1776 and TP-3654 given 3× a week, improved significantly pulmonary hemodynamics (right heart catheterization) and vascular remodeling (Elastica van Gieson) in monocrotaline and Fawn-Hooded rat models of PAH. CONCLUSIONS: We demonstrated that PIM1 phosphorylates KU70 and initiates DNA repair signaling in PAH-PASMCs and that PIM1 inhibitors represent a therapeutic option for patients with PAH.


Subject(s)
DNA Damage , DNA End-Joining Repair , Hypertension, Pulmonary/enzymology , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Proto-Oncogene Proteins c-pim-1/metabolism , Animals , Antihypertensive Agents/pharmacology , Apoptosis , Cell Proliferation , Cells, Cultured , DNA End-Joining Repair/drug effects , Disease Models, Animal , Female , Histones/metabolism , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/pathology , Ku Autoantigen/metabolism , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phosphoproteins/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/genetics , Pulmonary Artery/enzymology , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Vascular Remodeling
11.
Int J Mol Sci ; 22(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805714

ABSTRACT

Trifluoperazine (TFP), an antipsychotic drug approved by the Food and Drug Administration, has been show to exhibit anti-cancer effects. Pulmonary arterial hypertension (PAH) is a devastating disease characterized by a progressive obliteration of small pulmonary arteries (PAs) due to exaggerated proliferation and resistance to apoptosis of PA smooth muscle cells (PASMCs). However, the therapeutic potential of TFP for correcting the cancer-like phenotype of PAH-PASMCs and improving PAH in animal models remains unknown. PASMCs isolated from PAH patients were exposed to different concentrations of TFP before assessments of cell proliferation and apoptosis. The in vivo therapeutic potential of TFP was tested in two preclinical models with established PAH, namely the monocrotaline and sugen/hypoxia-induced rat models. Assessments of hemodynamics by right heart catheterization and histopathology were conducted. TFP showed strong anti-survival and anti-proliferative effects on cultured PAH-PASMCs. Exposure to TFP was associated with downregulation of AKT activity and nuclear translocation of forkhead box protein O3 (FOXO3). In both preclinical models, TFP significantly lowered the right ventricular systolic pressure and total pulmonary resistance and improved cardiac function. Consistently, TFP reduced the medial wall thickness of distal PAs. Overall, our data indicate that TFP could have beneficial effects in PAH and support the view that seeking new uses for old drugs may represent a fruitful approach.


Subject(s)
Cardiovascular Agents/pharmacology , Gene Expression Regulation/drug effects , Hypertension, Pulmonary/drug therapy , Hypoxia/prevention & control , Myocytes, Smooth Muscle/drug effects , Trifluoperazine/pharmacology , Animals , Antipsychotic Agents/pharmacology , Cell Proliferation/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Repositioning , Female , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Hemodynamics/drug effects , Humans , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/physiopathology , Hypoxia/chemically induced , Hypoxia/genetics , Hypoxia/physiopathology , Indoles/administration & dosage , Monocrotaline/administration & dosage , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pulmonary Artery/cytology , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , Pyrroles/administration & dosage , Rats , Rats, Sprague-Dawley , Survivin/genetics , Survivin/metabolism
12.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803922

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by a sustained elevation of pulmonary artery (PA) pressure, right ventricular failure, and premature death. Enhanced proliferation and resistance to apoptosis (as seen in cancer cells) of PA smooth muscle cells (PASMCs) is a major pathological hallmark contributing to pulmonary vascular remodeling in PAH, for which current therapies have only limited effects. Emerging evidence points toward a critical role for Enhancer of Zeste Homolog 2 (EZH2) in cancer cell proliferation and survival. However, its role in PAH remains largely unknown. The aim of this study was to determine whether EZH2 represents a new factor critically involved in the abnormal phenotype of PAH-PASMCs. We found that EZH2 is overexpressed in human lung tissues and isolated PASMCs from PAH patients compared to controls as well as in two animal models mimicking the disease. Through loss- and gain-of-function approaches, we showed that EZH2 promotes PAH-PASMC proliferation and survival. By combining quantitative transcriptomic and proteomic approaches in PAH-PASMCs subjected or not to EZH2 knockdown, we found that inhibition of EZH2 downregulates many factors involved in cell-cycle progression, including E2F targets, and contributes to maintain energy production. Notably, we found that EZH2 promotes expression of several nuclear-encoded components of the mitochondrial translation machinery and tricarboxylic acid cycle genes. Overall, this study provides evidence that, by overexpressing EZH2, PAH-PASMCs remove the physiological breaks that normally restrain their proliferation and susceptibility to apoptosis and suggests that EZH2 or downstream factors may serve as therapeutic targets to combat pulmonary vascular remodeling.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/genetics , Proteome/genetics , Pulmonary Arterial Hypertension/genetics , Transcriptome/genetics , Animals , Apoptosis/genetics , Cell Proliferation/genetics , Citric Acid Cycle/genetics , Epigenesis, Genetic/genetics , Female , Heart Ventricles/metabolism , Heart Ventricles/pathology , Humans , Lung/metabolism , Lung/pathology , Male , Middle Aged , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Pulmonary Arterial Hypertension/pathology , Pulmonary Artery/growth & development , Pulmonary Artery/pathology , Rats
13.
Am J Physiol Cell Physiol ; 318(1): C1-C28, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31483703

ABSTRACT

Although a majority of the mammalian genome is transcribed to RNA, mounting evidence indicates that only a minor proportion of these transcriptional products are actually translated into proteins. Since the discovery of the first non-coding RNA (ncRNA) in the 1980s, the field has gone on to recognize ncRNAs as important molecular regulators of RNA activity and protein function, knowledge of which has stimulated the expansion of a scientific field that quests to understand the role of ncRNAs in cellular physiology, tissue homeostasis, and human disease. Although our knowledge of these molecules has significantly improved over the years, we have limited understanding of their precise functions, protein interacting partners, and tissue-specific activities. Adding to this complexity, it remains unknown exactly how many ncRNAs there are in existence. The increased use of high-throughput transcriptomics techniques has rapidly expanded the list of ncRNAs, which now includes classical ncRNAs (e.g., ribosomal RNAs and transfer RNAs), microRNAs, and long ncRNAs. In addition, splicing by-products of protein-coding genes and ncRNAs, so-called circular RNAs, are now being investigated. Because there is substantial heterogeneity in the functions of ncRNAs, we have summarized the present state of knowledge regarding the functions of ncRNAs in heart, lungs, and skeletal muscle. This review highlights the pathophysiologic relevance of these ncRNAs in the context of human cardiovascular, pulmonary, and muscle diseases.


Subject(s)
Cardiovascular Diseases/genetics , Lung Diseases/genetics , Muscular Diseases/genetics , RNA, Untranslated/genetics , Animals , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Gene Expression Regulation , Genetic Markers , Humans , Lung Diseases/diagnosis , Lung Diseases/metabolism , Lung Diseases/physiopathology , Muscular Diseases/diagnosis , Muscular Diseases/metabolism , Muscular Diseases/physiopathology , Predictive Value of Tests , RNA, Untranslated/metabolism , Signal Transduction
14.
Am J Physiol Lung Cell Mol Physiol ; 319(2): L277-L288, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32551862

ABSTRACT

In the last few months, the number of cases of a new coronavirus-related disease (COVID-19) rose exponentially, reaching the status of a pandemic. Interestingly, early imaging studies documented that pulmonary vascular thickening was specifically associated with COVID-19 pneumonia, implying a potential tropism of the virus for the pulmonary vasculature. Moreover, SARS-CoV-2 infection is associated with inflammation, hypoxia, oxidative stress, mitochondrial dysfunction, DNA damage, and lung coagulopathy promoting endothelial dysfunction and microthrombosis. These features are strikingly similar to what is seen in pulmonary vascular diseases. Although the consequences of COVID-19 on the pulmonary circulation remain to be explored, several viruses have been previously thought to be involved in the development of pulmonary vascular diseases. Patients with preexisting pulmonary vascular diseases also appear at increased risk of morbidity and mortality. The present article reviews the molecular factors shared by coronavirus infection and pulmonary vasculature defects, and the clinical relevance of pulmonary vascular alterations in the context of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Lung Diseases/etiology , Lung/blood supply , Lung/physiopathology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , Coronavirus Infections/physiopathology , Coronavirus Infections/virology , Cytokines/blood , DNA Damage , Heart Injuries/etiology , Host Microbial Interactions/physiology , Humans , Hypoxia/etiology , Inflammation Mediators/blood , Lung/virology , Lung Diseases/physiopathology , Lung Diseases/virology , Mitochondria/physiology , Myocardium , Oxidative Stress , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/physiopathology , Pneumonia, Viral/virology , Pulmonary Circulation , Pulmonary Embolism/etiology , Receptors, Virus/physiology , Risk Factors , SARS-CoV-2 , Vasculitis/etiology
15.
Development ; 144(19): 3547-3561, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28827394

ABSTRACT

Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.


Subject(s)
Homeodomain Proteins/metabolism , Phosphoproteins/metabolism , Respiratory System/embryology , Respiratory System/metabolism , Animals , Animals, Newborn , Body Patterning/genetics , Cartilage/embryology , Cartilage/metabolism , Cell Differentiation/genetics , Crosses, Genetic , Diaphragm/innervation , Diaphragm/metabolism , Diaphragm/ultrastructure , Female , Gene Deletion , Gene Expression Regulation, Developmental , Genotype , Homeodomain Proteins/genetics , Male , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Motor Neurons/metabolism , Muscle Development , Muscle Fibers, Skeletal/metabolism , Organ Specificity/genetics , Phosphoproteins/genetics , Respiratory Mucosa/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction/genetics , Survival Analysis , Trachea/embryology , Trachea/metabolism , Transcription Factors
16.
Circ Res ; 122(7): 1021-1032, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29599278

ABSTRACT

Despite advances in our understanding of the pathophysiology and the management of pulmonary arterial hypertension (PAH), significant therapeutic gaps remain for this devastating disease. Yet, few innovative therapies beyond the traditional pathways of endothelial dysfunction have reached clinical trial phases in PAH. Although there are inherent limitations of the currently available models of PAH, the leaky pipeline of innovative therapies relates, in part, to flawed preclinical research methodology, including lack of rigour in trial design, incomplete invasive hemodynamic assessment, and lack of careful translational studies that replicate randomized controlled trials in humans with attention to adverse effects and benefits. Rigorous methodology should include the use of prespecified eligibility criteria, sample sizes that permit valid statistical analysis, randomization, blinded assessment of standardized outcomes, and transparent reporting of results. Better design and implementation of preclinical studies can minimize inherent flaws in the models of PAH, reduce the risk of bias, and enhance external validity and our ability to distinguish truly promising therapies form many false-positive or overstated leads. Ideally, preclinical studies should use advanced imaging, study several preclinical pulmonary hypertension models, or correlate rodent and human findings and consider the fate of the right ventricle, which is the major determinant of prognosis in human PAH. Although these principles are widely endorsed, empirical evidence suggests that such rigor is often lacking in pulmonary hypertension preclinical research. The present article discusses the pitfalls in the design of preclinical pulmonary hypertension trials and discusses opportunities to create preclinical trials with improved predictive value in guiding early-phase drug development in patients with PAH, which will need support not only from researchers, peer reviewers, and editors but also from academic institutions, funding agencies, and animal ethics authorities.


Subject(s)
Drug Evaluation, Preclinical/standards , Hypertension, Pulmonary/therapy , Practice Guidelines as Topic , Translational Research, Biomedical/standards , Animals , Humans , Hypertension, Pulmonary/drug therapy , National Institutes of Health (U.S.)/standards , Research Design/standards , United States
17.
Arterioscler Thromb Vasc Biol ; 39(8): 1667-1681, 2019 08.
Article in English | MEDLINE | ID: mdl-31092016

ABSTRACT

OBJECTIVE: Pulmonary arterial hypertension (PAH) is a debilitating disease associated with progressive vascular remodeling of distal pulmonary arteries leading to elevation of pulmonary artery pressure, right ventricular hypertrophy, and death. Although presenting high levels of DNA damage that normally jeopardize their viability, pulmonary artery smooth muscle cells (PASMCs) from patients with PAH exhibit a cancer-like proproliferative and apoptosis-resistant phenotype accounting for vascular lumen obliteration. In cancer cells, overexpression of the serine/threonine-protein kinase CHK1 (checkpoint kinase 1) is exploited to counteract the excess of DNA damage insults they are exposed to. This study aimed to determine whether PAH-PASMCs have developed an orchestrated response mediated by CHK1 to overcome DNA damage, allowing cell survival and proliferation. Approach and Results: We demonstrated that CHK1 expression is markedly increased in isolated PASMCs and distal PAs from patients with PAH compared with controls, as well as in multiple complementary animal models recapitulating the disease, including monocrotaline rats and the simian immunodeficiency virus-infected macaques. Using a pharmacological and molecular loss of function approach, we showed that CHK1 promotes PAH-PASMCs proliferation and resistance to apoptosis. In addition, we found that inhibition of CHK1 induces downregulation of the DNA repair protein RAD 51 and severe DNA damage. In vivo, we provided evidence that pharmacological inhibition of CHK1 significantly reduces vascular remodeling and improves hemodynamic parameters in 2 experimental rat models of PAH. CONCLUSIONS: Our results show that CHK1 exerts a proproliferative function in PAH-PASMCs by mitigating DNA damage and suggest that CHK1 inhibition may, therefore, represent an attractive therapeutic option for patients with PAH.


Subject(s)
Checkpoint Kinase 1/antagonists & inhibitors , Pulmonary Arterial Hypertension/drug therapy , Animals , Apoptosis , Ataxia Telangiectasia Mutated Proteins/physiology , Cells, Cultured , Checkpoint Kinase 1/physiology , DNA Damage , Disease Models, Animal , Humans , Male , MicroRNAs/physiology , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/enzymology , Myocytes, Smooth Muscle/physiology , Rats , Rats, Sprague-Dawley
18.
Am J Respir Crit Care Med ; 200(7): 910-920, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31042405

ABSTRACT

Rationale: Pulmonary arterial hypertension (PAH) is a degenerative arteriopathy that leads to right ventricular (RV) failure. BRD4 (bromodomain-containing protein 4), a member of the BET (bromodomain and extra-terminal motif) family, has been identified as a critical epigenetic driver for cardiovascular diseases.Objectives: To explore the therapeutic potential in PAH of RVX208, a clinically available BET inhibitor.Methods: Microvascular endothelial cells, smooth muscle cells isolated from distal pulmonary arteries of patients with PAH, rats with Sugen5416 + hypoxia- or monocrotaline + shunt-induced PAH, and rats with RV pressure overload induced by pulmonary artery banding were treated with RVX208 in three independent laboratories.Measurements and Main Results: BRD4 is upregulated in the remodeled pulmonary vasculature of patients with PAH, where it regulates FoxM1 and PLK1, proteins implicated in the DNA damage response. RVX208 normalized the hyperproliferative, apoptosis-resistant, and inflammatory phenotype of microvascular endothelial cells and smooth muscle cells isolated from patients with PAH. Oral treatment with RVX208 reversed vascular remodeling and improved pulmonary hemodynamics in two independent trials in Sugen5416 + hypoxia-PAH and in monocrotaline + shunt-PAH. RVX208 could be combined safely with contemporary PAH standard of care. RVX208 treatment also supported the pressure-loaded RV in pulmonary artery banding rats.Conclusions: RVX208, a clinically available BET inhibitor, modulates proproliferative, prosurvival, and proinflammatory pathways, potentially through interactions with FoxM1 and PLK1. This reversed the PAH phenotype in isolated PAH microvascular endothelial cells and smooth muscle cells in vitro, and in diverse PAH rat models. RVX208 also supported the pressure-loaded RV in vivo. Together, these data support the establishment of a clinical trial with RVX208 in patients with PAH.


Subject(s)
Cell Cycle Proteins/metabolism , Endothelial Cells/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/metabolism , Quinazolinones/pharmacology , Transcription Factors/metabolism , Vascular Remodeling/drug effects , Animals , Apoptosis/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Proliferation/drug effects , DNA Repair , Disease Models, Animal , Endothelial Cells/drug effects , Forkhead Box Protein M1/genetics , Gene Expression Regulation , Humans , Inflammation , Microvessels/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/drug effects , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Artery/cytology , Rats , Transcription Factors/antagonists & inhibitors , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL