Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters

Publication year range
1.
Plant Cell ; 35(8): 3073-3091, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37202370

ABSTRACT

Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.


Subject(s)
Arabidopsis , Polygalacturonase , Polygalacturonase/genetics , Polygalacturonase/metabolism , Arabidopsis/metabolism , Pectins/metabolism , Proteins/metabolism , Cell Wall/metabolism
2.
J Biol Chem ; 299(5): 104627, 2023 05.
Article in English | MEDLINE | ID: mdl-36944399

ABSTRACT

The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and oligomannose-5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in cocrystals of FimH is monovalent but interestingly the GlcNAc1-Fuc moiety retains highly flexibility. In cocrystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity.


Subject(s)
Adhesins, Escherichia coli , Mannose Receptor , Models, Molecular , Humans , Adhesins, Escherichia coli/chemistry , Adhesins, Escherichia coli/metabolism , Bacterial Adhesion , Escherichia coli/metabolism , Glycoproteins/metabolism , Mannose/metabolism , Mannose Receptor/chemistry , Mannose Receptor/metabolism , Polysaccharides/metabolism , Protein Binding , Protein Structure, Quaternary , Molecular Docking Simulation
3.
Glycobiology ; 31(8): 1005-1017, 2021 09 09.
Article in English | MEDLINE | ID: mdl-33909073

ABSTRACT

Paucimannosidic glycans are restricted to the core structure [Man1-3GlcNAc2Fuc0-1] of N-glycans and are rarely found in mammalian tissues. Yet, especially [Man2-3GlcNAc2Fuc1] have been found significantly upregulated in tumors, including in colorectal and liver cancer. Mannitou IgM is a murine monoclonal antibody that was previously shown to recognize Man3GlcNAc2 with an almost exclusive selectivity. Here, we have sought the definition of the minimal glycan epitope of Mannitou IgM, initiated by screening on a newly designed paucimannosidic glycan microarray; among the best binders were Man3GlcNAc2 and its α1,6 core-fucosylated variant, Man3GlcNAc2Fuc1. Unexpectedly and in contrast to earlier findings, Man5GlcNAc2-type structures bind equally well and a large tolerance was observed for substitutions on the α1,6 arm. It was confirmed that any substitution on the single α1,3-linked mannose completely abolishes binding. Surface plasmon resonance for kinetic measurements of Mannitou IgM binding, either directly on the glycans or as presented on omega-1 and kappa-5 soluble egg antigens from the helminth parasite Schistosoma mansoni, showed submicromolar affinities. To characterize the epitope in greater and atomic detail, saturation transfer difference nuclear magnetic resonance spectroscopy was performed with the Mannitou antigen-binding fragment. The STD-NMR data demonstrated the strongest interactions with the aliphatic protons H1 and H2 of the α1-3-linked mannose and weaker imprints on its H3, H4 and H5 protons. In conclusion, Mannitou IgM binding requires a nonsubstituted α1,3-linked mannose branch of paucimannose also on proteins, making it a highly specific tool for the distinction of concurrent human tumor-associated carbohydrate antigens.


Subject(s)
Glycoproteins , Schistosoma mansoni , Animals , DNA-Binding Proteins , Epitopes/chemistry , Fucose/metabolism , Glycoproteins/metabolism , Humans , Immunoglobulin M , Mammals/metabolism , Membrane Proteins , Mice , Polysaccharides/chemistry , Schistosoma mansoni/chemistry , Schistosoma mansoni/metabolism
4.
Chemistry ; 27(9): 3142-3150, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33150981

ABSTRACT

Bacterial sialidases (SA) are validated drug targets expressed by common human pathogens such as Streptococcus pneumoniae, Vibrio cholerae, or Clostridium perfringens. Noncovalent inhibitors of bacterial SA capable of reaching the submicromolar level are rarely reported. In this work, multi- and polyvalent compounds are developed, based on the transition-state analogue 2-deoxy-2,3-didehydro-N-acetylneuraminic (DANA). Poly-DANA inhibits the catalytic activity of SA from S. pneumoniae (NanA) and the symbiotic microorganism B. thetaiotaomicron (BtSA) at the picomolar and low nanomolar levels (expressed in moles of molecules and of DANA, respectively). Each DANA grafted to the polymer surpasses the inhibitory potential of the monovalent analogue by more than four orders of magnitude, which represents the highest multivalent effect reported so far for an enzyme inhibition. The synergistic interaction is shown to operate exclusively in the catalytic domain, and not in the flanked carbohydrate-binding module (CBM). These results offer interesting perspectives for the multivalent inhibition of other SA families lacking a CBM, such as viral, parasitic, or human SA.


Subject(s)
Neuraminidase/antagonists & inhibitors , Streptococcus pneumoniae/enzymology , Catalytic Domain/drug effects , Neuraminidase/metabolism , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/drug effects
5.
Anal Bioanal Chem ; 413(5): 1417-1428, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33388848

ABSTRACT

Surface-enhanced Raman scattering (SERS), based on the enhancement of the Raman signal of molecules positioned within a few nanometres from a structured metal surface, is ideally suited to provide bacterial-specific molecular fingerprints which can be used for analytical purposes. However, for some complex structures such as bacteria, the generation of reproducible SERS spectra is still a challenging task. Among the various factors influencing the SERS variability (such as the nature of SERS-active substrate, Raman parameters and bacterial specificity), we demonstrate in this study that the environment of Gram-positive and Gram-negative bacteria deposited on ultra-thin silver films also impacts the origin of the SERS spectra. In the case of densely packed bacteria, the obtained SERS signatures were either characteristic of the secretion of adenosine triphosphate for Staphylococcus aureus (S. aureus) or the cell wall and the pili/flagella for Escherichia coli (E. coli), allowing for an easy discrimination between the various strains. In the case of isolated bacteria, SERS mapping together with principal component analysis revealed some variabilities of the spectra as a function of the bacteria environment and the bactericidal effect of the silver. However, the variability does not preclude the SERS signatures of various E. coli strains to be discriminated.


Subject(s)
Escherichia coli/chemistry , Spectrum Analysis, Raman/methods , Staphylococcus aureus/chemistry , Escherichia coli/cytology , Escherichia coli Infections/microbiology , Humans , Silver/chemistry , Staphylococcal Infections/microbiology , Staphylococcus aureus/cytology , Surface Properties
6.
J Biol Chem ; 293(30): 11966-11967, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30054292

ABSTRACT

Human norovirus binding to histo-blood group antigens (HBGAs) is thought to direct their entry into host cells. However, the glycan epitopes characteristic of HBGAs are also present on oligosaccharides abundant in human milk. In this issue of JBC, Hanisch et al compared norovirus binding to human gastric mucins and human milk oligosaccharides, finding those bound most avidly are rich in α-fucose. Mimicry of these epitopes with α-fucose multivalently displayed on other carbohydrate scaffolds successfully scavenged this prevalent virus, providing new insights into norovirus biology and clues for future therapeutic development.


Subject(s)
Caliciviridae Infections/immunology , Fucose/immunology , Milk, Human/immunology , Norovirus/immunology , Oligosaccharides/immunology , Binding Sites , Epitopes/chemistry , Epitopes/immunology , Fucose/analogs & derivatives , Humans , Milk, Human/chemistry , Mucins/chemistry , Mucins/immunology , Norovirus/physiology , Oligosaccharides/chemistry , Polysaccharides/chemistry , Polysaccharides/immunology , Virus Internalization
7.
Chemistry ; 25(9): 2358-2365, 2019 Feb 11.
Article in English | MEDLINE | ID: mdl-30516296

ABSTRACT

Sialidases (SAs) hydrolyze sialyl residues from glycoconjugates of the eukaryotic cell surface and are virulence factors expressed by pathogenic bacteria, viruses, and parasites. The catalytic domains of SAs are often flanked with carbohydrate-binding module(s) previously shown to bind sialosides and to enhance enzymatic catalytic efficiency. Herein, non-hydrolyzable multivalent thiosialosides were designed as probes and inhibitors of V. cholerae, T. cruzi, and S. pneumoniae (NanA) sialidases. NanA was truncated from the catalytic and lectinic domains (NanA-L and NanA-C) to probe their respective roles upon interacting with sialylated surfaces and the synthetically designed di- and polymeric thiosialosides. The NanA-L domain was shown to fully drive NanA binding, improving affinity for the thiosialylated surface and compounds by more than two orders of magnitude. Importantly, each thiosialoside grafted onto the polymer was also shown to reduce NanA and NanA-C catalytic activity with efficiency that was 3000-fold higher than that of the monovalent thiosialoside reference. These results extend the concept of multivalency for designing potent bacterial and parasitic sialidase inhibitors.

8.
Molecules ; 24(24)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842510

ABSTRACT

Gold(III) porphyrin presents an attractive alternative to the use of, for example, cisplatin in chemotherapy. However, approaches that allow to selectively target cancer cells are highly sought. Many plant and mammalian lectins have been shown to bind oligosaccharide sequences of the aberrant glycosylation pattern found on cancerous tumors. For example human galectin-3, of the galectin family specific for ß-galactoside, is overexpressed in the extracellular matrix of tumorigenous and metastatic tissues. We searched for non-carbohydrate ligands for galectin-3 that can guide a cytotoxic drug to the cancer cells by maintaining its affinity for tumor associated carbohydrate antigens. Previous findings showed that zinc tetrasulfonatophenylporphyrin can bind galectin-3 with sub-micromolar affinity without disturbing lactose binding. Gold(III) porphyrin is not only cytotoxic to cancer cells, it knows also a potential application as photosensitiser in photodynamic therapy. We investigated the binding of gold(III) porphyrin to galectin-3 using different biophysical interaction techniques and demonstrated a low micromolar affinity of human galectin-3 for the cytotoxic compound. Co-crystallization attempts in order to understand the binding mode of gold porphyrin to galectin-3 failed, but molecular docking emphasized a highly populated secondary binding site that does not hinder lactose or Thomsen Friendenreich disaccharide binding. This suggests that gold(III) porphyrin might significantly enhance its concentration and delivery to cancer cells by binding to human galectin-3 that keeps its orientation towards tumor associated carbohydrate antigens.


Subject(s)
Antineoplastic Agents/chemistry , Galectin 3/chemistry , Gold/chemistry , Molecular Docking Simulation , Neoplasm Proteins/chemistry , Porphyrins/chemistry , Blood Proteins , Galectin 3/metabolism , Galectins , Humans , Neoplasm Metastasis , Neoplasm Proteins/metabolism
9.
Molecules ; 23(7)2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29976867

ABSTRACT

Located at the tip of type I fimbria of Escherichia coli, the bacterial adhesin FimH is responsible for the attachment of the bacteria to the (human) host by specifically binding to highly-mannosylated glycoproteins located on the exterior of the host cell wall. Adhesion represents a necessary early step in bacterial infection and specific inhibition of this process represents a valuable alternative pathway to antibiotic treatments, as such anti-adhesive drugs are non-intrusive and are therefore unlikely to induce bacterial resistance. The currently available anti-adhesives with the highest affinities for FimH still feature affinities in the nanomolar range. A prerequisite to develop higher-affinity FimH inhibitors is a molecular understanding of the FimH-inhibitor complex formation. The latest insights in the formation process are achieved by combining several molecular simulation and traditional experimental techniques. This review summarizes how molecular simulation contributed to the current knowledge of the molecular function of FimH and the importance of dynamics in the inhibitor binding process, and highlights the importance of the incorporation of dynamical aspects in (future) drug-design studies.


Subject(s)
Adhesins, Escherichia coli/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli/pathogenicity , Fimbriae Proteins/chemistry , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Drug Design , Escherichia coli/drug effects , Fimbriae Proteins/antagonists & inhibitors , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
10.
Molecules ; 23(11)2018 Oct 28.
Article in English | MEDLINE | ID: mdl-30373288

ABSTRACT

The fimbrial lectin FimH from uro- and enteropathogenic Escherichia coli binds with nanomolar affinity to oligomannose glycans exposing Manα1,3Man dimannosides at their non-reducing end, but only with micromolar affinities to Manα1,2Man dimannosides. These two dimannoses play a significantly distinct role in infection by E. coli. Manα1,2Man has been described early on as shielding the (Manα1,3Man) glycan that is more relevant to strong bacterial adhesion and invasion. We quantified the binding of the two dimannoses (Manα1,2Man and Manα1,3Man to FimH using ELLSA and isothermal microcalorimetry and calculated probabilities of binding modes using molecular dynamics simulations. Our experimentally and computationally determined binding energies confirm a higher affinity of FimH towards the dimannose Manα1,3Man. Manα1,2Man displays a much lower binding enthalpy combined with a high entropic gain. Most remarkably, our molecular dynamics simulations indicate that Manα1,2Man cannot easily take its major conformer from water into the FimH binding site and that FimH is interacting with two very different conformers of Manα1,2Man that occupy 42% and 28% respectively of conformational space. The finding that Manα1,2Man binding to FimH is unstable agrees with the earlier suggestion that E. coli may use the Manα1,2Man epitope for transient tethering along cell surfaces in order to enhance dispersion of the infection.


Subject(s)
Adhesins, Escherichia coli/chemistry , Fimbriae Proteins/chemistry , Lectins/chemistry , Polysaccharides/chemistry , Bacterial Adhesion , Calorimetry , Escherichia coli/physiology , Lectins/metabolism , Mannose/chemistry , Models, Molecular , Molecular Conformation , Protein Binding , Thermodynamics
11.
Molecules ; 22(7)2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28671638

ABSTRACT

Antagonists of the Escherichia coli type-1 fimbrial adhesin FimH are recognized as attractive alternatives for antibiotic therapies and prophylaxes against acute and recurrent bacterial infections. In this study α-d-mannopyranosides O- or C-linked with an alkyl, alkene, alkyne, thioalkyl, amide, or sulfonamide were investigated to fit a hydrophobic substituent with up to two aryl groups within the tyrosine gate emerging from the mannose-binding pocket of FimH. The results were summarized into a set of structure-activity relationships to be used in FimH-targeted inhibitor design: alkene linkers gave an improved affinity and inhibitory potential, because of their relative flexibility combined with a favourable interaction with isoleucine-52 located in the middle of the tyrosine gate. Of particular interest is a C-linked mannoside, alkene-linked to an ortho-substituted biphenyl that has an affinity similar to its O-mannosidic analog but superior to its para-substituted analog. Docking of its high-resolution NMR solution structure to the FimH adhesin indicated that its ultimate, ortho-placed phenyl ring is able to interact with isoleucine-13, located in the clamp loop that undergoes conformational changes under shear force exerted on the bacteria. Molecular dynamics simulations confirmed that a subpopulation of the C-mannoside conformers is able to interact in this secondary binding site of FimH.


Subject(s)
Adhesins, Escherichia coli/metabolism , Escherichia coli/metabolism , Fimbriae Proteins/metabolism , Mannosides/pharmacology , Adhesins, Escherichia coli/chemistry , Bacterial Adhesion , Binding Sites , Escherichia coli/drug effects , Fimbriae Proteins/chemistry , Mannosides/chemistry , Models, Molecular , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Structure-Activity Relationship
12.
Glycobiology ; 26(2): 203-14, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26525402

ABSTRACT

ß-1,2-Linked mannosides are expressed on numerous cell-wall glycoconjugates of the opportunistic pathogen yeast Candida albicans. Several studies evidenced their implication in the host-pathogen interaction and virulence mechanisms. In the present study, we characterized the in vitro activity of CaBmt3, a ß-1,2-mannosyltransferase involved in the elongation of ß-1,2-oligomannosides oligomers onto the cell-wall polymannosylated N-glycans. A recombinant soluble enzyme Bmt3p was produced in Pichia pastoris and its enzyme activity was investigated using natural and synthetic oligomannosides as potential acceptor substrates. Bmt3p was shown to exhibit an exquisite enzymatic specificity by adding a single terminal ß-mannosyl residue to α-1,2-linked oligomannosides capped by a Manß1-2Man motif. Furthermore, we demonstrated that the previously identified CaBmt1 and CaBmt3 efficiently act together to generate Manß1-2Manß1-2[Manα1-2]n sequence from α-1,2-linked oligomannosides onto exogenous and endogenous substrates.


Subject(s)
Candida/enzymology , Fungal Proteins/metabolism , Mannans/metabolism , Mannosyltransferases/metabolism , Phosphopeptides/metabolism , Candida/metabolism , Cell Wall/metabolism , Substrate Specificity
13.
Chembiochem ; 17(10): 936-52, 2016 05 17.
Article in English | MEDLINE | ID: mdl-26946458

ABSTRACT

Blocking the adherence of bacteria to cells is an attractive complementary approach to current antibiotic treatments, which are faced with increasing resistance. This strategy has been particularly studied in the context of urinary tract infections (UTIs), in which the adhesion of pathogenic Escherichia coli strains to uroepithelial cells is prevented by blocking the FimH adhesin expressed at the tips of bacteria organelles called fimbriae. Recently, we extended the antiadhesive concept, showing that potent FimH antagonists can block the attachment of adherent-invasive E. coli (AIEC) colonizing the intestinal mucosa of patients with Crohn's disease (CD). In this work, we designed a small library of analogues of heptyl mannoside (HM), a previously identified nanomolar FimH inhibitor, but one that displays poor antiadhesive effects in vivo. The anomeric oxygen atom was replaced by a sulfur or a methylene group to prevent hydrolysis by intestinal glycosidases, and chemical groups were attached at the end of the alkyl tail. Importantly, a lead compound was shown to reduce AIEC levels in the feces and in the colonic and ileal mucosa after oral administration (10 mg kg(-1) ) in a transgenic mouse model of CD. The compound showed a low bioavailability, preferable in this instance, thus suggesting the possibility of setting up an innovative antiadhesive therapy, based on the water-soluble and non-cytotoxic FimH antagonists developed here, for the CD subpopulation in which AIEC plays a key role.


Subject(s)
Bacterial Adhesion/drug effects , Crohn Disease/therapy , Escherichia coli/drug effects , Intestinal Mucosa/microbiology , Mannosides/pharmacology , Adhesins, Escherichia coli/metabolism , Animals , Biological Availability , Body Weight/drug effects , Cell Survival/drug effects , Crohn Disease/metabolism , Crohn Disease/microbiology , Crohn Disease/pathology , Crystallography, X-Ray , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Fimbriae Proteins/antagonists & inhibitors , Fimbriae Proteins/metabolism , Humans , Mannosides/chemistry , Mannosides/metabolism , Mice , Mice, Transgenic , Protein Binding , Protein Domains
14.
Biomacromolecules ; 16(6): 1827-36, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-25961760

ABSTRACT

n-Heptyl α-d-mannose (HM) is a nanomolar antagonist of FimH, a virulence factor of E. coli. Herein we report on the construction of multivalent HM-based glycopolymers as potent antiadhesives of type 1 piliated E. coli. We investigate glycopolymer/FimH and glycopolymer/bacteria interactions and show that HM-based glycopolymers efficiently inhibit bacterial adhesion and disrupt established cell-bacteria interactions in vitro at very low concentration (0.1 µM on a mannose unit basis). On a valency-corrected basis, HM-based glycopolymers are, respectively, 10(2) and 10(6) times more potent than HM and d-mannose for their capacity to disrupt the binding of adherent-invasive E. coli to T84 intestinal epithelial cells. Finally, we demonstrate that the antiadhesive capacities of HM-based glycopolymers are preserved ex vivo in the colonic loop of a transgenic mouse model of Crohn's disease. All together, these results underline the promising scope of HM-based macromolecular ligands for the antiadhesive treatment of E. coli induced inflammatory bowel diseases.


Subject(s)
Fimbriae Proteins/antagonists & inhibitors , Intestinal Mucosa/drug effects , Polysaccharides, Bacterial/pharmacology , Adhesins, Escherichia coli , Animals , Cell Adhesion/drug effects , Escherichia coli/pathogenicity , HeLa Cells , Heptanol/chemistry , Humans , Inflammatory Bowel Diseases/microbiology , Mannose/chemistry , Mice , Polysaccharides, Bacterial/chemistry
15.
Biochem J ; 457(2): 347-60, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24138199

ABSTRACT

The presence of ß-mannosides in their cell walls confers specific features on the pathogenic yeasts Candida albicans and Candida glabrata compared with non-pathogenic yeasts. In the present study, we investigated the enzymatic properties of Bmt1 (ß-mannosyltransferase 1), a member of the recently identified ß-mannosyltransferase family, from C. albicans. A recombinant soluble enzyme lacking the N-terminal region was expressed as a secreted protein from the methylotrophic yeast Pichia pastoris. In parallel, functionalized natural oligosaccharides isolated from Saccharomyces cerevisiae and a C. albicans mutant strain, as well as synthetic α-oligomannosides, were prepared and used as potential acceptor substrates. Bmt1p preferentially utilizes substrates containing linear chains of α-1,2-linked mannotriose or mannotetraose. The recombinant enzyme consecuti-vely transfers two mannosyl units on to these acceptors, leading to the production of α-mannosidase-resistant oligomannosides. NMR experiments further confirmed the presence of a terminal ßMan (ß-1,2-linked mannose) unit in the first enzyme product. In the future, a better understanding of specific ß-1,2-mannosyltransferase molecular requirements will help the design of new potential antifungal drugs.


Subject(s)
Candida albicans/enzymology , Cell Wall/enzymology , Mannans/chemistry , Mannosyltransferases/chemistry , Phosphopeptides/chemistry , Candida albicans/genetics , Mannans/genetics , Mannans/metabolism , Mannose/chemistry , Mannose/genetics , Mannose/metabolism , Mannosyltransferases/genetics , Mannosyltransferases/metabolism , Phosphopeptides/genetics , Phosphopeptides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
Mol Microbiol ; 86(1): 82-95, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22812428

ABSTRACT

F18-positive enterotoxigenic and Shiga toxin-producing Escherichia coli are responsible for post-weaning diarrhoea and oedema disease in pigs and lead to severe production losses in the farming industry. F18 fimbriae attach to the small intestine of young piglets by latching onto glycosphingolipids with A/H blood group determinants on type 1 core. We demonstrate the N-terminal domain of the F18 fimbrial subunit FedF to be responsible for ABH-mediated attachment and present its X-ray structure in ligand-free form and bound to A and B type 1 hexaoses. The FedF lectin domain comprises a 10-stranded immunoglobulin-like ß-sandwich. Three linear motives, Q(47) -N(50), H(88) -S(90) and R(117) -T(119), form a shallow glycan binding pocket near the tip of the domain that is selective for type 1 core glycans in extended conformation. In addition to the glycan binding pocket, a polybasic loop on the membrane proximal surface of FedF lectin domain is shown to be required for binding to piglet enterocytes. Although dispensable for ABH glycan recognition, the polybasic surface adds binding affinity in the context of the host cell membrane, a mechanism that is proposed to direct ABH-glycan binding to cell-bound glycosphingolipids and could allow bacteria to avoid clearance by secreted glycoproteins.


Subject(s)
ABO Blood-Group System/chemistry , ABO Blood-Group System/metabolism , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/chemistry , Animals , Binding Sites , Cell Line , Crystallography, X-Ray , Enterocytes/microbiology , Models, Molecular , Protein Binding , Protein Conformation , Swine
17.
Chemistry ; 19(24): 7847-55, 2013 Jun 10.
Article in English | MEDLINE | ID: mdl-23595913

ABSTRACT

n-Heptyl α-D-mannoside (HM) has previously been identified as a nanomolar FimH antagonist able to prevent Escherichia coli adhesion. We have designed mono- and heptavalent glycoconjugates in which HM is tethered to ß-cyclodextrin (ß-CD) through short and long spacers. One-pot click or co-clicking procedures were developed to directly obtain the glycoconjugates from unprotected HM and ß-CD precursors. These FimH antagonists were examined biophysically and in vivo. Reverse titrations by isothermal calorimetry led to trapping of the short-tethered heptavalent ß-CD in a complex with three FimH lectins. Combined dynamic light scattering and small-angle X-ray solution scattering data allowed the construction of a model of the FimH trimer. The heptavalent ß-CDs were shown to capture and aggregate living bacteria in solution and are therefore also able to aggregate FimH when attached to different bacteria pili. The first in vivo evaluation of multivalent FimH inhibitors has been performed. The heptavalent ß-CDs proved to be much more effective anti-adhesive agents than monovalent references with doses of around 2 µg instilled in the mouse bladder leading to a significantly decreased E. coli load. Intravenously injected radiolabeled glycoconjugates can rapidly reach the mouse bladder and >2 µg concentrations can easily be retained over 24 h to prevent fluxing bacteria from rebinding.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Fimbriae Proteins/antagonists & inhibitors , Mannosides/pharmacology , beta-Cyclodextrins/pharmacology , Adhesins, Escherichia coli , Animals , Calorimetry , Click Chemistry , Escherichia coli/chemistry , Fimbriae, Bacterial/drug effects , Mannosides/chemistry , Mice , Models, Biological , beta-Cyclodextrins/chemistry
18.
Autoimmun Rev ; 23(2): 103486, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38040100

ABSTRACT

Anti-Saccharomyces cerevisiae antibodies (ASCA) are human antibodies that can be detected using an enzyme-linked immunosorbent assay involving a mannose polymer (mannan) extracted from the cell wall of the yeast S. cerevisiae. The ASCA test was developed in 1993 with the aim of differentiating the serological response in two forms of inflammatory bowel disease (IBD), Crohn's disease and ulcerative colitis. The test, which is based on the detection of anti-oligomannosidic antibodies, has been extensively performed worldwide and there have been hundreds of publications on ASCA. The earlier studies concerned the initial diagnostic indications of ASCA and investigations then extended to many human diseases, generally in association with studies on intestinal microorganisms and the interaction of the micro-mycobiome with the immune system. The more information accumulates, the more the mystery of the meaning of ASCA deepens. Many fundamental questions remain unanswered. These questions concern the heterogeneity of ASCA, the mechanisms of their generation and persistence, the existence of self-antigens, and the relationship between ASCA and inflammation and autoimmunity. This review aims to discuss the gray areas concerning the origin of ASCA from an analysis of the literature. Structured around glycobiology and the mannosylated antigens of S. cerevisiae and Candida albicans, this review will address these questions and will try to clarify some lines of thought. The importance of the questions relating to the pathophysiological significance of ASCA goes far beyond IBD, even though these diseases remain the preferred models for their understanding.

19.
Pharmaceutics ; 15(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36839848

ABSTRACT

Selective antiadhesion antagonists of Uropathogenic Escherichia coli (UPEC) type-1 Fimbrial adhesin (FimH) are attractive alternatives for antibiotic therapies and prophylaxes against acute or recurrent urinary tract infections (UTIs) caused by UPECs. A rational small library of FimH antagonists based on previously described C-linked allyl α-D-mannopyranoside was synthesized using Heck cross-coupling reaction using a series of iodoaryl derivatives. This work reports two new members of FimH antagonist amongst the above family with sub nanomolar affinity. The resulting hydrophobic aglycones, including constrained alkene and aryl groups, were designed to provide additional favorable binding interactions with the so-called FimH "tyrosine gate". The newly synthesized C-linked glycomimetic antagonists, having a hydrolytically stable anomeric linkage, exhibited improved binding when compared to previously published analogs, as demonstrated by affinity measurement through interactions by FimH lectin. The crystal structure of FimH co-crystallized with one of the nanomolar antagonists revealed the binding mode of this inhibitor into the active site of the tyrosine gate. In addition, selected mannopyranoside constructs neither affected bacterial growth or cell viability nor interfered with antibiotic activity. C-linked mannoside antagonists were effective in decreasing bacterial adhesion to human bladder epithelial cells (HTB-9). Therefore, these molecules constituted additional therapeutic candidates' worth further development in the search for potent anti-adhesive drugs against infections caused by UPEC.

20.
Int J Biol Macromol ; 231: 123137, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36639075

ABSTRACT

Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by ß-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel ß-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.


Subject(s)
Molecular Dynamics Simulation , Polysaccharide-Lyases , Polysaccharide-Lyases/chemistry , Glycosides , Pectins/chemistry , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL