Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Anal Chem ; 89(3): 1772-1777, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28095671

ABSTRACT

Universal quantitative detection without the need for analyte reference standards would offer substantial benefits in many areas of analytical science. The quantitative capability of high-performance liquid chromatography (HPLC) with charged aerosol detection (CAD) was investigated for 50 compounds with a wide range of physical and chemical properties. It is widely believed that CAD is a mass detector. Quantification of the 50 compounds using a generic calibrant and mass calibration achieved an average error of 11.4% relative to 1H NMR. Correction factors are proposed that estimate the relative surface area of particles in the detector, taking into account the effects of the density and charge of analytes. Performing these corrections and quantifying with surface area calibration, rather than mass, shows considerably improved linearity and uniformity of detection, reducing the average error relative to 1H NMR to 7.1%. The accuracy of CAD quantification was most significantly improved for highly dense compounds, with traditional mass calibration showing an average error of 34.7% and the newly proposed surface area calibration showing an average error of 5.8%.

2.
J Chromatogr A ; 1218(23): 3711-7, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21543072

ABSTRACT

The development of a seven-component test mixture designed for use with a generic gradient and a reversed-phase high performance liquid chromatography-mass spectrometry (RP-HPLC-MS) system is discussed. Unlike many test mixtures formulated in order to characterise column quality at neutral pH, the test mixture reported here was designed to permit an overall suitability assessment of the whole liquid chromatography-mass spectrometry (LCMS) system. The mixture is designed to test the chromatographic performance of the column as well as certain aspects of the performance of the individual instrumental components of the system. The System Suitability Test Mix can be used for low and high pH generic reverse phase LCMS analysis. Four phthalates are used: diethyl phthalate (DEP), diamyl phthalate (DAP), di-n-hexyl phthalate (DHP) and dioctyl phthalate (DOP). Three other probes are employed: 8-bromoguanosine (8-BG), amitryptyline (Ami), and 4-chlorocinnamic acid (4-CCA). We show that analysis of this test mixture can alert the user when any part of the system (instrument or column) contributes to loss of overall performance and may require remedial action and demonstrate that it can provide information that enables us to document data quality control.


Subject(s)
Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase/methods , Mass Spectrometry/methods , Software , Amitriptyline/chemistry , Automation , Chromatography, High Pressure Liquid/standards , Chromatography, Reverse-Phase/standards , Cinnamates/chemistry , Guanosine/analogs & derivatives , Guanosine/chemistry , Hydrogen-Ion Concentration , Mass Spectrometry/standards , Phthalic Acids/chemistry , Reference Standards
3.
Anal Chem ; 77(14): 4354-65, 2005 Jul 15.
Article in English | MEDLINE | ID: mdl-16013846

ABSTRACT

There is an urgent need for detection technologies that enable accurate and precise quantification of solutions containing small organic molecules in a manner that is rapid, cheap, non-labor-intensive, readily automated, and without a requirement for specific analyte standards. We provide a theoretical analysis that predicts that the logarithmic nature of the working domain of the evaporative light-scattering detector (ELSD) will normally bias toward underestimation of chromatographically resolved impurities, resulting in an overestimation of analyte purity. This analysis is confirmed by experiments with flow injection analysis (FIA) and gradient reversed-phase high performance liquid chromatography (RP-HPLC). Quantification is further compromised by the dependence of response parameters on the matrix composition and hence on the retention time of the analyte. Attempts were made to ameliorate these problems by using the response surface of a single compound to calibrate throughout the HPLC gradient. A chemiluminescent nitrogen detector (CLND) was also used in a similar manner, and the performance of the two techniques were compared against those of each other and that of a reference standard technique. A protocol for this purpose was developed using proton nuclear magnetic resonance (1H NMR) and the ERETIC method to enable quantification by integrating proton signals. The double-blind comparison exercise confirmed molar nitrogen CLND response to be sufficiently stable and robust across a methanol gradient to be used with a single external nitrogenous calibrant to quantify nitrogen-containing compounds of known molecular formula. The performance of HPLC-CLND was very similar to that of NMR, while that of HPLC-ELSD was seen to be significantly worse, showing it to be unsuitable for the purpose of single-calibrant quantification. We report details and experience of our use of RP-HPLC-CLND-MS to characterize and quantify small amounts of solutions of novel compounds at nominal levels of 10mM in microtiter plate (MTP) format.

4.
Chirality ; 15 Suppl: S1-S12, 2003.
Article in English | MEDLINE | ID: mdl-12884369

ABSTRACT

Pharmaceutical companies have a continuous need to resolve new racemates. Analysis may be required in aqueous and nonaqueous media, or in the presence of several different sets of potentially interfering compounds. There is often a preparative requirement. For these reasons analysts may require a number of different separation systems capable of resolving a given pair of enantiomers. We wished to improve upon existing approaches that address this situation and undertook a program of work to screen over 100 racemates, selected for their chemical diversity, on over 100 different chiral HPLC, SFC, and CE systems. Here we report results of this comparison and illustrate the use of rapid gradient screening as a valuable tool for chiral method development.

SELECTION OF CITATIONS
SEARCH DETAIL