Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Basic Microbiol ; 62(10): 1202-1215, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35945171

ABSTRACT

The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.


Subject(s)
Actinobacteria , Cellulases , Actinomyces/genetics , Agar , Algeria , Amylases , Anti-Bacterial Agents/pharmacology , Asparaginase/genetics , Cellulases/genetics , Ecosystem , Esterases/genetics , Glutaminase/genetics , Peptide Hydrolases/genetics , Phylogeny , Polygalacturonase , RNA, Ribosomal, 16S/genetics , Salts , Soil , Wetlands
2.
Biomed Environ Sci ; 28(4): 316-20, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25966760

ABSTRACT

A study was performed to estimate the prevalence of the external bacterial flora of two domestic cockroaches (Blattella germanica and Blatta orientalis) collected from households in Tebessa (northeast Algeria). Three major bacterial groups were cultured (total aerobic, enterobacteria, and staphylococci) from 14 specimens of cockroaches, and antibiotic susceptibility was tested for both Staphylococcus and Pseudomonas isolates. Culturing showed that the total bacterial load of cockroaches from different households were comparable (P<0.001) and enterobacteria were the predominant colonizers of the insect surface, with a bacterial load of (2.1 × 105 CFU/insect), whereas the staphylococci group was the minority. Twenty-eight bacterial species were isolated, and susceptibility patterns showed that most of the staphylococci isolates were highly susceptible to chloramphenicol, gentamycin, pristinamycin, ofloxacin, clindamycin, and vancomycin; however, Pseudomonas strains exhibited resistance to amoxicillin/clavulanic acid, imipenem, and the second-generation antibiotic cephalosporin cefuroxime.


Subject(s)
Blattellidae/microbiology , Drug Resistance, Bacterial , Pseudomonas/drug effects , Staphylococcus/drug effects , Algeria , Animals , Female , Housing , Male , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL