Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Physiol Endocrinol Metab ; 321(6): E753-E765, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34747201

ABSTRACT

Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.


Subject(s)
Insulin Resistance/genetics , Lipoprotein Lipase/metabolism , Myocardium/metabolism , Vascular Endothelial Growth Factor B/genetics , Animals , Cells, Cultured , Enzyme Activation/genetics , Female , Heart/physiology , Insulin/metabolism , Male , Organ Specificity/genetics , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Up-Regulation/genetics , Vascular Endothelial Growth Factor B/metabolism
2.
J Physiol ; 593(23): 5157-66, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26496146

ABSTRACT

Age-related decline in cardiac function can be prevented or postponed by lifelong endurance training. However, effects of normal ageing as well as of lifelong endurance exercise on longitudinal and radial contribution to stroke volume are unknown. The aim of this study was to determine resting longitudinal and radial pumping in elderly athletes, sedentary elderly and young sedentary subjects. Furthermore, we aimed to investigate determinants of maximal cardiac output in elderly. Eight elderly athletes (63 ± 4 years), seven elderly sedentary (66 ± 4 years) and ten young sedentary subjects (29 ± 4 years) underwent cardiac magnetic resonance imaging. All subjects underwent maximal exercise testing and for elderly subjects maximal cardiac output during cycling was determined using a dye dilution technique. Longitudinal and radial contribution to stroke volume did not differ between groups (longitudinal left ventricle (LV) 52-65%, P = 0.12, right ventricle (RV) 77-87%, P = 0.16, radial 7.9-8.6%, P = 1.0). Left ventricular atrioventricular plane displacement (LVAVPD) was higher in elderly athletes and young sedentary compared with elderly sedentary subjects (14 ± 3, 15 ± 2 and 11 ± 1 mm, respectively, P < 0.05). There was no difference between groups for RVAVPD (P = 0.2). LVAVPD was an independent predictor of maximal cardiac output (R(2) = 0.61, P < 0.01, ß = 0.78). Longitudinal and radial contributions to stroke volume did not differ between groups. However, how longitudinal pumping was achieved differed; elderly athletes and young sedentary subjects showed similar AVPD whereas this was significantly lower in elderly sedentary subjects. Elderly sedentary subjects achieved longitudinal pumping through increased short-axis area of the ventricle. Large AVPD was a determinant of maximal cardiac output and exercise capacity.


Subject(s)
Cardiac Output , Exercise , Heart/growth & development , Ventricular Function , Adult , Aged , Case-Control Studies , Heart/physiology , Humans , Male , Middle Aged , Physical Endurance
3.
Am J Physiol Regul Integr Comp Physiol ; 302(5): R634-42, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22170619

ABSTRACT

Plasma hyperosmolality and baroreceptor unloading have been shown to independently influence the heat loss responses of sweating and cutaneous vasodilation. However, their combined effects remain unresolved. On four separate occasions, eight males were passively heated with a liquid-conditioned suit to 1.0°C above baseline core temperature during a resting isosmotic state (infusion of 0.9% NaCl saline) with (LBNP) and without (CON) application of lower-body negative pressure (-40 cmH2O) and during a hyperosmotic state (infusion of 3.0% NaCl saline) with (LBNP + HYP) and without (HYP) application of lower-body negative pressure. Forearm sweat rate (ventilated capsule) and skin blood flow (laser-Doppler), as well as core (esophageal) and mean skin temperatures, were measured continuously. Plasma osmolality increased by ∼10 mosmol/kgH2O during HYP and HYP + LBNP conditions, whereas it remained unchanged during CON and LBNP (P ≤ 0.05). The change in mean body temperature (0.8 × core temperature + 0.2 × mean skin temperature) at the onset threshold for increases in cutaneous vascular conductance (CVC) was significantly greater during LBNP (0.56 ± 0.24°C) and HYP (0.69 ± 0.36°C) conditions compared with CON (0.28 ± 0.23°C, P ≤ 0.05). Additionally, the onset threshold for CVC during LBNP + HYP (0.88 ± 0.33°C) was significantly greater than CON and LBNP conditions (P ≤ 0.05). In contrast, onset thresholds for sweating were not different during LBNP (0.50 ± 0.18°C) compared with CON (0.46 ± 0.26°C, P = 0.950) but were elevated (P ≤ 0.05) similarly during HYP (0.91 ± 0.37°C) and LBNP + HYP (0.94 ± 0.40°C). Our findings show an additive effect of hyperosmolality and baroreceptor unloading on the onset threshold for increases in CVC during whole body heat stress. In contrast, the onset threshold for sweating during heat stress was only elevated by hyperosmolality with no effect of the baroreflex.


Subject(s)
Baroreflex/physiology , Plasma/physiology , Regional Blood Flow/physiology , Skin/blood supply , Sweating/physiology , Adult , Body Temperature/physiology , Humans , Lower Body Negative Pressure , Male , Osmolar Concentration , Pressoreceptors/physiology , Skin Temperature/physiology , Sodium Chloride , Water-Electrolyte Balance/physiology
4.
Appl Physiol Nutr Metab ; 43(9): 865-868, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29969568

ABSTRACT

This perspective document summarizes discussions held at the Canadian Society for Exercise Physiology Annual Meeting in Winnipeg on October 27, 2017, when an expert panel was assembled to discuss the key questions and challenges for future research in cardiovascular exercise physiology. We were inspired by the example of the late Dr. Mike Sharratt, an accomplished and impactful Professor in the Faculty of Kinesiology at the University of Waterloo. Dr. Sharratt had a unique ability to bring experts together and translate theory into action, with a central goal of optimizing the health benefits of exercise, particularly in the fields of cardiac rehabilitation and aging (University of Waterloo Applied Health Science Department 2016; University of Waterloo Health Science Newsletter, 10-1-2017 ( http://uwaterloo.ca/applied-health-sciences/news/remembering-mike-sharratt )).


Subject(s)
Cardiovascular Physiological Phenomena , Exercise/physiology , Canada , Congresses as Topic , History, 21st Century , Humans
SELECTION OF CITATIONS
SEARCH DETAIL