Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cytotherapy ; 20(3): 343-360, 2018 03.
Article in English | MEDLINE | ID: mdl-29396254

ABSTRACT

BACKGROUND AIMS: Connective tissue progenitors (CTPs) embody the heterogeneous stem and progenitor cell populations present in native tissue. CTPs are essential to the formation and remodeling of connective tissue and represent key targets for tissue-engineering and cell-based therapies. To better understand and characterize CTPs, we aimed to compare the (i) concentration and prevalence, (ii) early in vitro biological behavior and (iii) expression of surface-markers and transcription factors among cells derived from marrow space (MS), trabecular surface (TS), and adipose tissues (AT). METHODS: Cancellous-bone and subcutaneous-adipose tissues were collected from 8 patients. Cells were isolated and cultured. Colony formation was assayed using Colonyze software based on ASTM standards. Cell concentration ([Cell]), CTP concentration ([CTP]) and CTP prevalence (PCTP) were determined. Attributes of culture-expanded cells were compared based on (i) effective proliferation rate and (ii) expression of surface-markers CD73, CD90, CD105, SSEA-4, SSEA-3, SSEA-1/CD15, Cripto-1, E-Cadherin/CD324, Ep-CAM/CD326, CD146, hyaluronan and transcription factors Oct3/4, Sox-2 and Nanog using flow cytometry. RESULTS: Mean [Cell], [CTP] and PCTP were significantly different between MS and TS samples (P = 0.03, P = 0.008 and P= 0.0003), respectively. AT-derived cells generated the highest mean total cell yield at day 6 of culture-4-fold greater than TS and more than 40-fold greater than MS per million cells plated. TS colonies grew with higher mean density than MS colonies (290 ± 11 versus 150 ± 11 cell per mm2; P = 0.0002). Expression of classical-mesenchymal stromal cell (MSC) markers was consistently recorded (>95%) from all tissue sources, whereas all the other markers were highly variable. CONCLUSIONS: The prevalence and biological potential of CTPs are different between patients and tissue sources and lack variation in classical MSC markers. Other markers are more likely to discriminate differences between cell populations in biological performance. Understanding the underlying reasons for variation in the concentration, prevalence, marker expression and biological potential of CTPs between patients and source tissues and determining the means of managing this variation will contribute to the rational development of cell-based clinical diagnostics and targeted cell-based therapies.


Subject(s)
Adipose Tissue/cytology , Biomarkers/metabolism , Bone and Bones/cytology , Connective Tissue Cells/cytology , Stem Cells/cytology , Adult , Aged , Bone Marrow Cells/cytology , Cell Culture Techniques , Cells, Cultured , Connective Tissue Cells/physiology , Female , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Stem Cells/physiology
2.
Cartilage ; 13(1): 19476035221074003, 2022.
Article in English | MEDLINE | ID: mdl-35109693

ABSTRACT

OBJECTIVE: Clinical heterogeneity of primary osteoarthritis (OA) is a major challenge in understanding pathogenesis and development of targeted therapeutic strategies. This study aims to (1) identify OA patient subgroups phenotypes and (2) determine predictors of OA severity and cartilage-derived stem/progenitor concentration using clinical-, tissue-, and cell- level metrics. DESIGN: Cartilage, synovium (SYN) and infrapatellar fatpad (IPFP) were collected from 90 total knee arthroplasty patients. Clinical metrics (patient demographics, radiograph-based joint space width (JSW), Kellgren and Lawrence score (KL)), tissue metrics (cartilage histopathology grade, glycosaminoglycans (GAGs)) and cell-based metrics (cartilage-, SYN-, and IPFP-derived cell concentration ([Cell], cells/mg), connective tissue progenitor (CTP) prevalence (PCTP, CTPs/million cells plated), CTP concentration, [CTP], CTPs/mg)) were assessed using k-mean clustering and linear regression model. RESULTS: Four patient subgroups were identified. Clusters 1 and 2 comprised of younger, high body mass index (BMI) patients with healthier cartilage, where Cluster 1 had high CTP in cartilage, SYN, and IPFP, and Cluster 2 had low [CTP] in cartilage, SYN, and IPFP. Clusters 3 and 4 comprised of older, low BMI patients with diseased cartilage where Cluster 3 had low [CTP] in SYN, IPFP but high [CTP] in cartilage, and Cluster 4 had high [CTP] in SYN, IPFP but low [CTP] in cartilage. Age (r = 0.23, P = 0.026), JSW (r = 0.28, P = 0.007), KL (r = 0.26, P = 0.012), GAG/mg cartilage tissue (r = -0.31, P = 0.007), and SYN-derived [Cell] (r = 0.25, P = 0.049) were weak but significant predictors of OA severity. Cartilage-derived [Cell] (r = 0.38, P < 0.001) and PCTP (r = 0.9, P < 0.001) were moderate/strong predictors of cartilage-derived [CTP]. CONCLUSION: Initial findings suggests the presence of OA patient subgroups that could define opportunities for more targeted patient-specific approaches to prevention and treatment.


Subject(s)
Osteoarthritis, Knee , Benchmarking , Cytidine Triphosphate , Humans , Knee Joint/diagnostic imaging , Knee Joint/pathology , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Phenotype
3.
J Bone Joint Surg Am ; 103(17): 1628-1636, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33844657

ABSTRACT

BACKGROUND: Connective tissue progenitors (CTPs) resident in native tissues serve as biological building blocks in tissue repair and remodeling processes. Methods for analysis and reporting on CTP quantity and quality are essential for defining optimal cell sources and donor characteristics and the impact of cell processing methods for cell therapy applications. The present study examines the influence of donor characteristics and cell concentration (nucleated cells/mL) on CTP prevalence (CTPs/million nucleated cells) and CTP concentration (CTPs/mL) in bone marrow aspirates (BMAs). METHODS: Iliac crest bone marrow was aspirated from 436 patients during elective total knee or hip arthroplasty. Bone marrow-derived nucleated cells were plated at a density of 1.19 × 105 cells/cm2. Colony-forming unit analysis was performed on day 6. RESULTS: Large variation was seen between donors. Age (p < 0.05) and cell concentration (p < 0.001) significantly influenced CTP prevalence and CTP concentration. For every 1-year increase in age, the odds of having at least an average CTP prevalence and CTP concentration decreased by 1.5% and 1.6%, respectively. For every 1 million cells/mL increase in cell concentration, the odds of having at least an average CTP prevalence and CTP concentration increased by 2.2% and 7.9%, respectively. Sex, race, body mass index (BMI), and the presence of osteoporosis did not influence CTP prevalence or CTP concentration. CONCLUSIONS: BMA-derived CTPs were obtained from all patient groups. CTP prevalence and CTP concentration decreased with age. Cell concentration decreased with age and positively correlated with total CTP prevalence and CTP concentration. The mean CTP concentration in patients >60 years of age was a third of the CTP concentration in patients <30 years of age. CLINICAL RELEVANCE: Proper BMA techniques are necessary to obtain a high-quality yield and composition of cells and CTPs. The reduced CTP concentration and CTP prevalence in the elderly may be mitigated by the use of cell processing methods that increase CTP concentration and CTP prevalence (e.g., by removing red blood cells, serum, and non-CTPs or by increasing aspirate volumes). Cell concentration in the BMA can be measured at the point of care and is an appropriate initial assessment of the quality of BMA.


Subject(s)
Bone Marrow Cells/cytology , Connective Tissue Cells/cytology , Stem Cells/cytology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Body Mass Index , Cell Count , Child , Female , Humans , Ilium/cytology , Male , Middle Aged , Osteoporosis/pathology , Sex Factors , Young Adult
4.
Regen Med ; 14(7): 639-646, 2019 07.
Article in English | MEDLINE | ID: mdl-31322050

ABSTRACT

Aim: A limiting factor in advancement of bone marrow based cell therapies is the lack of characterization of cell products delivered to patients. Methods: Using an automated hematology analyzer that can be implemented in clinical setting, the composition of bone marrow aspirates (n = 17 patients) and bone marrow concentrates (n = 12 patients) were assessed. ICC estimates were calculated for measuring reliability. Results: Bone marrow aspirates assessment resulted in excellent reliability for determining white blood cells (ICC - 0.96; 95% CI: 0.92-0.99), red blood cells (ICC - 0.9; 95% CI: 0.77-0.96), platelets (ICC - 0.93; 95% CI: 0.85-0.97) composition. Bone marrow concentrate assessment resulted in excellent reliability for determining white blood cells (ICC - 0.97; 95% CI: 0.93-0.99), platelets (ICC - 0.95; 95% CI: 0.89-0.99) and moderate reliability for red blood cells (ICC - 0.66; 95% CI: 0.36-0.87) composition. Conclusion: Modern automated hematology analyzers could assist to better characterize the cell therapy products to provide reliable and consistent outcomes.


Subject(s)
Blood Platelets/cytology , Bone Marrow Cells/cytology , Erythrocytes/cytology , Flow Cytometry , Leukocytes/cytology , Adult , Female , Humans , Male
5.
J Orthop Res ; 36(6): 1728-1738, 2018 06.
Article in English | MEDLINE | ID: mdl-29240251

ABSTRACT

Cell-based therapies development for the treatment of osteoarthritis (OA) requires an understanding of the disease progression and attributes of the cells resident in cartilage. This study focused on quantitative assessment of the concentration and biological potential of stem and progenitor cells resident in different zones of cartilage displaying macroscopic Outerbridge grade 1-2 OA, and their correlation with OA progression based on established histologic scoring system. Lateral femoral condyles were collected from 15 patients with idiopathic OA and varus knees undergoing total knee arthroplasty. Superficial(Csp , top ∼ 500 µm) and deep cartilage(Cdp ) was separated. Chondrogenic Connective Tissue Progenitors (CTP-C) were assayed by standardized Colony-Forming-Unit assay using automated image analysis (ColonyzeTM ) based on ASTM standard F-2944-12. Cell concentration (cells/mg) was significantly greater in Csp (median: 7,000; range: 3,440-17,600) than Cdp (median: 5,340; range: 3,393-9,660), p = 0.039. Prevalence (CTPs/million cells) was not different between Csp (median: 1,274; range: 0-3,898) and Cdp (median:1,365; range:0-6,330), p = 0.42. In vitro performance of CTP-C progeny varied widely within and between patients, manifest by variation in colony size and morphology. Mean histopathological Mankin score was 4.7 (SD = 1.2), representing mild to moderate OA. Tidemark breach by blood vessels was associated with lower Csp cell concentration (p = 0.02). Matrix degradation was associated with lower Cdp cell and CTP-C concentration (p = 0.015 and p = 0.095, respectively), independent of articular surface changes. These findings suggest that the initiation of OA may occur in either superficial or deep zones. The pathological changes affect CTP-Cs in Csp and Cdp cartilage zones differently. The heterogeneity among the available CTP-Cs in Csp and Cdp suggests performance-based selection to optimize cell-sourcing strategies for therapy. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1728-1738, 2018.


Subject(s)
Cartilage, Articular/cytology , Osteoarthritis, Knee/pathology , Stem Cells/cytology , Aged , Cells, Cultured , Colony-Forming Units Assay , Disease Progression , Female , Humans , Male , Middle Aged , Stem Cell Transplantation
6.
J Orthop Res ; 36(4): 1135-1144, 2018 04.
Article in English | MEDLINE | ID: mdl-28960501

ABSTRACT

Heterotopic ossification (HO) develops in the extremities of wounded service members and is common in the setting of high-energy penetrating injuries and blast-related amputations. No safe and effective prophylaxis modality has been identified for this patient population. Palovarotene has been shown to reduce bone formation in traumatic and genetic models of HO. The purpose of this study was to determine the effects of Palovarotene on inflammation, progenitor cell proliferation, and gene expression following a blast-related amputation in a rodent model (n = 72 animals), as well as the ability of Raman spectroscopy to detect early HO before radiographic changes are present. Treatment with Palovarotene was found to dampen the systemic inflammatory response including the cytokines IL-6 (p = 0.01), TNF-α (p = 0.001), and IFN-γ (p = 0.03) as well as the local inflammatory response via a 76% reduction in the cellular infiltration at post-operative day (POD)-7 (p = 0.03). Palovarotene decreased osteogenic connective tissue progenitor (CTP-O) colonies by as much as 98% both in vitro (p = 0.04) and in vivo (p = 0.01). Palovarotene treated animals exhibited significantly decreased expression of osteo- and chondrogenic genes by POD-7, including BMP4 (p = 0.02). Finally, Raman spectroscopy was able to detect differences between the two groups by POD-1 (p < 0.001). These results indicate that Palovarotene inhibits traumatic HO formation through multiple inter-related mechanisms including anti-inflammatory, anti-proliferative, and gene expression modulation. Further, that Raman spectroscopy is able to detect markers of early HO formation before it becomes radiographically evident, which could facilitate earlier diagnosis and treatment. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1135-1144, 2018.


Subject(s)
Multipotent Stem Cells/drug effects , Ossification, Heterotopic/prevention & control , Osteogenesis/drug effects , Pyrazoles/therapeutic use , Stilbenes/therapeutic use , Animals , Blast Injuries/complications , Cell Proliferation/drug effects , Chondrogenesis/drug effects , Drug Evaluation, Preclinical , Gene Expression/drug effects , Male , Ossification, Heterotopic/etiology , Pyrazoles/pharmacology , Rats, Sprague-Dawley , Spectrum Analysis, Raman , Stilbenes/pharmacology , Systemic Inflammatory Response Syndrome/prevention & control , War-Related Injuries/complications
SELECTION OF CITATIONS
SEARCH DETAIL