Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur Radiol ; 33(11): 8067-8076, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37328641

ABSTRACT

OBJECTIVES: Surgical planning of vestibular schwannoma surgery would benefit greatly from a robust method of delineating the facial-vestibulocochlear nerve complex with respect to the tumour. This study aimed to optimise a multi-shell readout-segmented diffusion-weighted imaging (rs-DWI) protocol and develop a novel post-processing pipeline to delineate the facial-vestibulocochlear complex within the skull base region, evaluating its accuracy intraoperatively using neuronavigation and tracked electrophysiological recordings. METHODS: In a prospective study of five healthy volunteers and five patients who underwent vestibular schwannoma surgery, rs-DWI was performed and colour tissue maps (CTM) and probabilistic tractography of the cranial nerves were generated. In patients, the average symmetric surface distance (ASSD) and 95% Hausdorff distance (HD-95) were calculated with reference to the neuroradiologist-approved facial nerve segmentation. The accuracy of patient results was assessed intraoperatively using neuronavigation and tracked electrophysiological recordings. RESULTS: Using CTM alone, the facial-vestibulocochlear complex of healthy volunteer subjects was visualised on 9/10 sides. CTM were generated in all 5 patients with vestibular schwannoma enabling the facial nerve to be accurately identified preoperatively. The mean ASSD between the annotators' two segmentations was 1.11 mm (SD 0.40) and the mean HD-95 was 4.62 mm (SD 1.78). The median distance from the nerve segmentation to a positive stimulation point was 1.21 mm (IQR 0.81-3.27 mm) and 2.03 mm (IQR 0.99-3.84 mm) for the two annotators, respectively. CONCLUSIONS: rs-DWI may be used to acquire dMRI data of the cranial nerves within the posterior fossa. CLINICAL RELEVANCE STATEMENT: Readout-segmented diffusion-weighted imaging and colour tissue mapping provide 1-2 mm spatially accurate imaging of the facial-vestibulocochlear nerve complex, enabling accurate preoperative localisation of the facial nerve. This study evaluated the technique in 5 healthy volunteers and 5 patients with vestibular schwannoma. KEY POINTS: • Readout-segmented diffusion-weighted imaging (rs-DWI) with colour tissue mapping (CTM) visualised the facial-vestibulocochlear nerve complex on 9/10 sides in 5 healthy volunteer subjects. • Using rs-DWI and CTM, the facial nerve was visualised in all 5 patients with vestibular schwannoma and within 1.21-2.03 mm of the nerve's true intraoperative location. • Reproducible results were obtained on different scanners.


Subject(s)
Neuroma, Acoustic , Humans , Neuroma, Acoustic/diagnostic imaging , Neuroma, Acoustic/surgery , Neuroma, Acoustic/pathology , Prospective Studies , Diffusion Tensor Imaging/methods , Diffusion Magnetic Resonance Imaging , Facial Nerve/diagnostic imaging , Facial Nerve/pathology , Vestibulocochlear Nerve/pathology
2.
Neurocomputing (Amst) ; 544: None, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37528990

ABSTRACT

Accurate segmentation of brain tumors from medical images is important for diagnosis and treatment planning, and it often requires multi-modal or contrast-enhanced images. However, in practice some modalities of a patient may be absent. Synthesizing the missing modality has a potential for filling this gap and achieving high segmentation performance. Existing methods often treat the synthesis and segmentation tasks separately or consider them jointly but without effective regularization of the complex joint model, leading to limited performance. We propose a novel brain Tumor Image Synthesis and Segmentation network (TISS-Net) that obtains the synthesized target modality and segmentation of brain tumors end-to-end with high performance. First, we propose a dual-task-regularized generator that simultaneously obtains a synthesized target modality and a coarse segmentation, which leverages a tumor-aware synthesis loss with perceptibility regularization to minimize the high-level semantic domain gap between synthesized and real target modalities. Based on the synthesized image and the coarse segmentation, we further propose a dual-task segmentor that predicts a refined segmentation and error in the coarse segmentation simultaneously, where a consistency between these two predictions is introduced for regularization. Our TISS-Net was validated with two applications: synthesizing FLAIR images for whole glioma segmentation, and synthesizing contrast-enhanced T1 images for Vestibular Schwannoma segmentation. Experimental results showed that our TISS-Net largely improved the segmentation accuracy compared with direct segmentation from the available modalities, and it outperformed state-of-the-art image synthesis-based segmentation methods.

3.
J Phys D Appl Phys ; 54(29): 294003, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34024940

ABSTRACT

Despite advances in intraoperative surgical imaging, reliable discrimination of critical tissue during surgery remains challenging. As a result, decisions with potentially life-changing consequences for patients are still based on the surgeon's subjective visual assessment. Hyperspectral imaging (HSI) provides a promising solution for objective intraoperative tissue characterisation, with the advantages of being non-contact, non-ionising and non-invasive. However, while its potential to aid surgical decision-making has been investigated for a range of applications, to date no real-time intraoperative HSI (iHSI) system has been presented that follows critical design considerations to ensure a satisfactory integration into the surgical workflow. By establishing functional and technical requirements of an intraoperative system for surgery, we present an iHSI system design that allows for real-time wide-field HSI and responsive surgical guidance in a highly constrained operating theatre. Two systems exploiting state-of-the-art industrial HSI cameras, respectively using linescan and snapshot imaging technology, were designed and investigated by performing assessments against established design criteria and ex vivo tissue experiments. Finally, we report the use of our real-time iHSI system in a clinical feasibility case study as part of a spinal fusion surgery. Our results demonstrate seamless integration into existing surgical workflows.

4.
J Med Internet Res ; 23(3): e22219, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33600347

ABSTRACT

Coincident with the tsunami of COVID-19-related publications, there has been a surge of studies using real-world data, including those obtained from the electronic health record (EHR). Unfortunately, several of these high-profile publications were retracted because of concerns regarding the soundness and quality of the studies and the EHR data they purported to analyze. These retractions highlight that although a small community of EHR informatics experts can readily identify strengths and flaws in EHR-derived studies, many medical editorial teams and otherwise sophisticated medical readers lack the framework to fully critically appraise these studies. In addition, conventional statistical analyses cannot overcome the need for an understanding of the opportunities and limitations of EHR-derived studies. We distill here from the broader informatics literature six key considerations that are crucial for appraising studies utilizing EHR data: data completeness, data collection and handling (eg, transformation), data type (ie, codified, textual), robustness of methods against EHR variability (within and across institutions, countries, and time), transparency of data and analytic code, and the multidisciplinary approach. These considerations will inform researchers, clinicians, and other stakeholders as to the recommended best practices in reviewing manuscripts, grants, and other outputs from EHR-data derived studies, and thereby promote and foster rigor, quality, and reliability of this rapidly growing field.


Subject(s)
COVID-19/epidemiology , Data Collection/methods , Electronic Health Records , Data Collection/standards , Humans , Peer Review, Research/standards , Publishing/standards , Reproducibility of Results , SARS-CoV-2/isolation & purification
5.
Pharmacoepidemiol Drug Saf ; 28(5): 632-639, 2019 05.
Article in English | MEDLINE | ID: mdl-30680840

ABSTRACT

PURPOSE: PCORnet, the National Patient-Centered Clinical Research Network, represents an innovative system for the conduct of observational and pragmatic studies. We describe the identification and validation of a retrospective cohort of patients with type 2 diabetes (T2DM) from four PCORnet sites. METHODS: We adapted existing computable phenotypes (CP) for the identification of patients with T2DM and evaluated their performance across four PCORnet sites (2012-2016). Patients entered the cohort on the earliest date they met one of three CP categories: (CP1) coded T2DM diagnosis (ICD-9/ICD-10) and an antidiabetic prescription, (CP2) diagnosis and glycosylated hemoglobin (HbA1c) ≥6.5%, or (CP3) an antidiabetic prescription and HbA1c ≥6.5%. We required evidence of health care utilization in each of the 2 prior years for each patient, as we also developed an incident T2DM CP to identify the subset of patients without documentation of T2DM in the 365 days before t0 . Among a systematic sample of patients, we calculated the positive predictive value (PPV) for the T2DM CP and incident-T2DM CP using electronic health record (EHR) review as reference. RESULTS: The CP identified 50 657 patients with T2DM. The PPV of patients randomly selected for validation was 96.2% (n = 1572; CI:95.1-97.0) and was consistently high across sites. The PPV for the incident-T2DM CP was 5.8% (CI:4.5-7.5). CONCLUSIONS: The T2DM CP accurately and efficiently identified patients with T2DM across multiple sites that participate in PCORnet, although the incident T2DM CP requires further study. PCORnet is a valuable data source for future epidemiological and comparative effectiveness research among patients with T2DM.


Subject(s)
Comparative Effectiveness Research/methods , Computer Communication Networks , Diabetes Mellitus, Type 2/epidemiology , Electronic Health Records/statistics & numerical data , Patient-Centered Care , Adolescent , Adult , Aged , Aged, 80 and over , Algorithms , Cohort Studies , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Incidence , Information Storage and Retrieval , International Classification of Diseases , Male , Middle Aged , Retrospective Studies , United States , Young Adult
6.
J Synchrotron Radiat ; 23(2): 404-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26917126

ABSTRACT

The Vertically Integrated Photon Imaging Chip (VIPIC) was custom-designed for X-ray photon correlation spectroscopy, an application in which occupancy per pixel is low but high time resolution is needed. VIPIC operates in a sparsified streaming mode in which each detected photon is immediately read out as a time- and position-stamped event. This event stream can be fed directly to an autocorrelation engine or accumulated to form a conventional image. The detector only delivers non-zero data (sparsified readout), greatly reducing the communications overhead typical of conventional frame-oriented detectors such as charge-coupled devices or conventional hybrid pixel detectors. This feature allows continuous acquisition of data with timescales from microseconds to hours. In this work VIPIC has been used to measure X-ray photon correlation spectroscopy data on polystyrene latex nano-colliodal suspensions in glycerol and on colloidal suspensions of silica spheres in water. Relaxation times of the nano-colloids have been measured for different temperatures. These results demonstrate that VIPIC can operate continuously in the microsecond time frame, while at the same time probing longer timescales.

7.
Br J Neurosurg ; 30(2): 191-4, 2016.
Article in English | MEDLINE | ID: mdl-27001167

ABSTRACT

OBJECTIVES: Documentation of urgent referrals to neurosurgical units and communication with referring hospitals is critical for effective handover and appropriate continuity of care within a tertiary service. Referrals to our neurosurgical unit were audited and we found that the majority of referrals were not documented and this led to more calls to the on-call neurosurgery registrar regarding old referrals. We implemented a new referral system in an attempt to improve documentation of referrals, communication with our referring hospitals and to professionalise the service we offer them. METHODS: During a 14-day period, number of bleeps, missed bleeps, calls discussing new referrals and previously processed referrals were recorded. Whether new referrals were appropriately documented and referrers received a written response was also recorded. A commercially provided secure cloud-based data archiving telecommunications and database platform for referrals was subsequently introduced within the Trust and the questionnaire repeated during another 14-day period 1 year after implementation. RESULTS: Missed bleeps per day reduced from 16% (SD ± 6.4%) to 9% (SD ± 4.8%; df = 13, paired t-tests p = 0.007) and mean calls per day clarifying previous referrals reduced from 10 (SD ± 4) to 5 (SD ± 3.5; df = 13, p = 0.003). Documentation of new referrals increased from 43% (74/174) to 85% (181/210), and responses to referrals increased from 74% to 98%. CONCLUSION: The use of a secure cloud-based data archiving telecommunications and database platform significantly increased the documentation of new referrals. This led to fewer missed bleeps and fewer calls about old referrals for the on call registrar. This system of documenting referrals results in improved continuity of care for neurosurgical patients, a significant reduction in risk for Trusts and a more efficient use of Registrar time.


Subject(s)
Communication , Databases, Factual , Documentation/statistics & numerical data , Neurosurgery , Neurosurgical Procedures/statistics & numerical data , Humans , Neurosurgery/methods , Neurosurgery/statistics & numerical data , Referral and Consultation , Risk Reduction Behavior
8.
Hepatology ; 58(1): 304-13, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23389887

ABSTRACT

UNLABELLED: Microparticles (MPs), membrane fragments of 0.1-1.0 µm, are derived from many cell types in response to systemic inflammation. Acute liver failure (ALF) is a prototypical syndrome of systemic inflammatory response syndrome (SIRS) associated with a procoagulant state. We hypothesized that patients with ALF develop increased procoagulant MPs in proportion to the severity of systemic complications and adverse outcome. Fifty patients with acute liver injury (ALI), 78% of whom also had hepatic encephalopathy (HE; ALF), were followed until day 21 after admission. MPs were characterized by Invitrox Sizing, Antigen Detection and Enumeration, a light-scattering technology that can enumerate MPs as small as 0.15 µm, and by flow cytometry. Procoagulant activity was assessed by a functional MP-tissue factor (MP-TF) assay. Sixteen patients (32%) died and 27 (54%) recovered without liver transplantation (LT). Total MPs (0.15-1.0 µm) were present in nearly 19-fold higher concentrations in ALI/ALF patients, compared to healthy controls (P < 0.0001). MP-TF assays revealed high procoagulant activity (9.05 ± 8.82 versus 0.24 ± 0.14 pg/mL in controls; P = 0.0008). MP concentrations (0.28-0.64 µm) were higher in patients with the SIRS and high-grade HE, and MPs in the 0.36-0.64-µm size range increased in direct proportion to SIRS severity (P < 0.001) and grade of HE (P < 0.002). Day 1 MPs (0.28-0.64 µm) correlated with laboratory predictors of death/LT (higher phosphate and creatinine; lower bicarbonate), and day 1 and 3 MPs were higher in patients who died or underwent LT, compared to spontaneous survivors (P ≤ 0.01). By flow cytometry, 87% of patients had circulating CD41(+) MPs, indicating platelet origin. CONCLUSION: Highly procoagulant MPs of specific size ranges are associated with the SIRS, systemic complications, and adverse outcome of ALI/ALF. MPs may contribute to the multiorgan system failure and high mortality of ALF.


Subject(s)
Cell-Derived Microparticles/metabolism , Hepatic Encephalopathy/blood , Liver Failure, Acute/complications , Systemic Inflammatory Response Syndrome/etiology , Adult , Female , Humans , Male , Middle Aged , Platelet Membrane Glycoprotein IIb/blood , Systemic Inflammatory Response Syndrome/blood , Thromboplastin/metabolism
9.
Br J Neurosurg ; 28(3): 387-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24810984

ABSTRACT

The recent move of the neurosurgical services from The Royal Free London NHS Foundation Trust in Hampstead to The National Hospital for Neurology and Neurosurgery at Queen Square signified the end of an era of neurosurgery in North London. It also represents also another chapter in the history of the remarkable North London hospital that is The Royal Free Hospital. This short article looks at the history of the Department of Neurosurgery at The Royal Free Hospital and the factors contributing to the reorganisation of neurosurgical services in North London.


Subject(s)
Hospitals/history , Neurosurgery/history , History, 19th Century , London
10.
Healthcare (Basel) ; 12(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38727466

ABSTRACT

Paramedics are increasingly being subjected to violence, creating the potential for significant physical and psychological harm. Where a patient has a history of violent behavior, hazard flags-applied either to the individual, their residential address, or phone number-can alert paramedics to the possibility of violence, potentially reducing the risk of injury. Leveraging a novel violence reporting process embedded in the electronic patient care record, we reviewed violence reports filed over a thirteen-month period since its inception in February 2021 to assess the effectiveness of hazard flagging as a potential risk mitigation strategy. Upon reviewing a report, paramedic supervisors can generate a hazard flag if recurrent violent behavior from the patient is anticipated. In all, 502 violence reports were filed, for which paramedic supervisors generated hazard flags in 20% of cases (n = 99). In general, cases were not flagged either because the incident occurred at a location not amenable to flagging or because the supervisors felt that a hazard flag was not warranted based on the details in the report. Hazard flagging was associated with an increased risk of violence during subsequent paramedic attendance (Odds Ratio [OR] 6.21, p < 0.001). Nevertheless, the process appears to reliably identify persons who may be violent towards paramedics.

11.
Front Comput Neurosci ; 18: 1365727, 2024.
Article in English | MEDLINE | ID: mdl-38784680

ABSTRACT

Automatic segmentation of vestibular schwannoma (VS) from routine clinical MRI has potential to improve clinical workflow, facilitate treatment decisions, and assist patient management. Previous work demonstrated reliable automatic segmentation performance on datasets of standardized MRI images acquired for stereotactic surgery planning. However, diagnostic clinical datasets are generally more diverse and pose a larger challenge to automatic segmentation algorithms, especially when post-operative images are included. In this work, we show for the first time that automatic segmentation of VS on routine MRI datasets is also possible with high accuracy. We acquired and publicly release a curated multi-center routine clinical (MC-RC) dataset of 160 patients with a single sporadic VS. For each patient up to three longitudinal MRI exams with contrast-enhanced T1-weighted (ceT1w) (n = 124) and T2-weighted (T2w) (n = 363) images were included and the VS manually annotated. Segmentations were produced and verified in an iterative process: (1) initial segmentations by a specialized company; (2) review by one of three trained radiologists; and (3) validation by an expert team. Inter- and intra-observer reliability experiments were performed on a subset of the dataset. A state-of-the-art deep learning framework was used to train segmentation models for VS. Model performance was evaluated on a MC-RC hold-out testing set, another public VS datasets, and a partially public dataset. The generalizability and robustness of the VS deep learning segmentation models increased significantly when trained on the MC-RC dataset. Dice similarity coefficients (DSC) achieved by our model are comparable to those achieved by trained radiologists in the inter-observer experiment. On the MC-RC testing set, median DSCs were 86.2(9.5) for ceT1w, 89.4(7.0) for T2w, and 86.4(8.6) for combined ceT1w+T2w input images. On another public dataset acquired for Gamma Knife stereotactic radiosurgery our model achieved median DSCs of 95.3(2.9), 92.8(3.8), and 95.5(3.3), respectively. In contrast, models trained on the Gamma Knife dataset did not generalize well as illustrated by significant underperformance on the MC-RC routine MRI dataset, highlighting the importance of data variability in the development of robust VS segmentation models. The MC-RC dataset and all trained deep learning models were made available online.

12.
Magn Reson Med ; 69(5): 1310-6, 2013 May.
Article in English | MEDLINE | ID: mdl-22693040

ABSTRACT

This study investigated the use of dynamic, volumetric MRI to measure 3D skeletal motion. Ten healthy subjects were positioned on a MR-compatible knee loading device and instructed to harmonically flex and extend their knee at 0.5 Hz. The device induced active quadriceps loading with knee flexion, similar to the load acceptance phase of gait. Volumetric images were continuously acquired for 5 min using a 3D cine spoiled gradient-echo sequence in conjunction with vastly under-sampled isotropic projection reconstruction. Knee angle was simultaneously monitored and used retrospectively to sort images into 60 frames over the motion cycle. High-resolution static knee images were acquired and segmented to create subject-specific models of the femur and tibia. At each time frame, bone positions and orientations were determined by automatically registering the skeletal models to the dynamic images. Three-dimensional tibiofemoral translations and rotations were consistent across healthy subjects. Internal tibia rotations of 7.8±3.5° were present with 35.8±3.8° of knee flexion, a pattern consistent with knee kinematic measures during walking. We conclude that vastly under-sampled isotropic projection reconstruction imaging is a promising approach for noninvasively measuring 3D joint kinematics, which may be useful for assessing cartilage contact and investigating the causes and treatment of joint abnormalities.


Subject(s)
Femur/physiology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Knee Joint/physiology , Magnetic Resonance Imaging/methods , Range of Motion, Articular/physiology , Tibia/physiology , Algorithms , Female , Femur/anatomy & histology , Humans , Image Enhancement/methods , Knee Joint/anatomy & histology , Male , Reproducibility of Results , Sensitivity and Specificity , Tibia/anatomy & histology , Young Adult
13.
Sci Adv ; 8(31): eabq7224, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35930649

ABSTRACT

Molecular-scale diodes made from self-assembled monolayers (SAMs) could complement silicon-based technologies with smaller, cheaper, and more versatile devices. However, advancement of this emerging technology is limited by insufficient electronic performance exhibited by the molecular current rectifiers. We overcome this barrier by exploiting the charge-transfer state that results from co-assembling SAMs of molecules with strong electron donor and acceptor termini. We obtain a substantial enhancement in current rectification, which correlates with the degree of charge transfer, as confirmed by several complementary techniques. These findings provide a previously enexplored method for manipulating the properties of molecular electronic devices by exploiting donor/acceptor interactions. They also serve as a model test platform for the study of doping mechanisms in organic systems. Our devices have the potential for fast widespread adoption due to their low-cost processing and self-assembly onto silicon substrates, which could allow seamless integration with current technologies.

14.
J Biophotonics ; 15(4): e202100072, 2022 04.
Article in English | MEDLINE | ID: mdl-35048541

ABSTRACT

Neuro-oncology surgery would benefit from detailed intraoperative tissue characterization provided by noncontact, contrast-agent-free, noninvasive optical imaging methods. In-depth knowledge of target tissue optical properties across a wide-wavelength spectrum could inform the design of optical imaging and computational methods to enable robust tissue analysis during surgery. We adapted a dual-beam integrating sphere to analyse small tissue samples and investigated ex vivo optical properties of five types of human brain tumour (meningioma, pituitary adenoma, schwannoma, low- and high-grade glioma) and nine different types of healthy brain tissue across a wavelength spectrum of 400 to 1800 nm. Fresh and frozen tissue samples were analysed. All tissue types demonstrated similar absorption spectra, but the reduced scattering coefficients of tumours show visible differences in the obtained optical spectrum compared to those of surrounding normal tissue. These results underline the potential of optical imaging technologies for intraoperative tissue characterization.


Subject(s)
Brain Neoplasms , Glioma , Meningeal Neoplasms , Meningioma , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Humans
15.
Sci Data ; 8(1): 286, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711849

ABSTRACT

Automatic segmentation of vestibular schwannomas (VS) from magnetic resonance imaging (MRI) could significantly improve clinical workflow and assist patient management. We have previously developed a novel artificial intelligence framework based on a 2.5D convolutional neural network achieving excellent results equivalent to those achieved by an independent human annotator. Here, we provide the first publicly-available annotated imaging dataset of VS by releasing the data and annotations used in our prior work. This collection contains a labelled dataset of 484 MR images collected on 242 consecutive patients with a VS undergoing Gamma Knife Stereotactic Radiosurgery at a single institution. Data includes all segmentations and contours used in treatment planning and details of the administered dose. Implementation of our automated segmentation algorithm uses MONAI, a freely-available open-source framework for deep learning in healthcare imaging. These data will facilitate the development and validation of automated segmentation frameworks for VS and may also be used to develop other multi-modal algorithmic models.


Subject(s)
Algorithms , Artificial Intelligence , Magnetic Resonance Imaging , Neuroma, Acoustic/diagnostic imaging , Adult , Aged , Aged, 80 and over , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Neural Networks, Computer , Young Adult
16.
Int J Comput Assist Radiol Surg ; 16(8): 1347-1356, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33937966

ABSTRACT

PURPOSE: Image-guided surgery (IGS) is an integral part of modern neuro-oncology surgery. Navigated ultrasound provides the surgeon with reconstructed views of ultrasound data, but no commercial system presently permits its integration with other essential non-imaging-based intraoperative monitoring modalities such as intraoperative neuromonitoring. Such a system would be particularly useful in skull base neurosurgery. METHODS: We established functional and technical requirements of an integrated multi-modality IGS system tailored for skull base surgery with the ability to incorporate: (1) preoperative MRI data and associated 3D volume reconstructions, (2) real-time intraoperative neurophysiological data and (3) live reconstructed 3D ultrasound. We created an open-source software platform to integrate with readily available commercial hardware. We tested the accuracy of the system's ultrasound navigation and reconstruction using a polyvinyl alcohol phantom model and simulated the use of the complete navigation system in a clinical operating room using a patient-specific phantom model. RESULTS: Experimental validation of the system's navigated ultrasound component demonstrated accuracy of [Formula: see text] and a frame rate of 25 frames per second. Clinical simulation confirmed that system assembly was straightforward, could be achieved in a clinically acceptable time of [Formula: see text] and performed with a clinically acceptable level of accuracy. CONCLUSION: We present an integrated open-source research platform for multi-modality IGS. The present prototype system was tailored for neurosurgery and met all minimum design requirements focused on skull base surgery. Future work aims to optimise the system further by addressing the remaining target requirements.


Subject(s)
Monitoring, Intraoperative/methods , Neurosurgical Procedures/methods , Phantoms, Imaging , Skull Base/surgery , Surgery, Computer-Assisted/methods , Humans , Magnetic Resonance Imaging , Skull Base/diagnostic imaging , Software , Ultrasonography
17.
J Am Med Inform Assoc ; 28(3): 427-443, 2021 03 01.
Article in English | MEDLINE | ID: mdl-32805036

ABSTRACT

OBJECTIVE: Coronavirus disease 2019 (COVID-19) poses societal challenges that require expeditious data and knowledge sharing. Though organizational clinical data are abundant, these are largely inaccessible to outside researchers. Statistical, machine learning, and causal analyses are most successful with large-scale data beyond what is available in any given organization. Here, we introduce the National COVID Cohort Collaborative (N3C), an open science community focused on analyzing patient-level data from many centers. MATERIALS AND METHODS: The Clinical and Translational Science Award Program and scientific community created N3C to overcome technical, regulatory, policy, and governance barriers to sharing and harmonizing individual-level clinical data. We developed solutions to extract, aggregate, and harmonize data across organizations and data models, and created a secure data enclave to enable efficient, transparent, and reproducible collaborative analytics. RESULTS: Organized in inclusive workstreams, we created legal agreements and governance for organizations and researchers; data extraction scripts to identify and ingest positive, negative, and possible COVID-19 cases; a data quality assurance and harmonization pipeline to create a single harmonized dataset; population of the secure data enclave with data, machine learning, and statistical analytics tools; dissemination mechanisms; and a synthetic data pilot to democratize data access. CONCLUSIONS: The N3C has demonstrated that a multisite collaborative learning health network can overcome barriers to rapidly build a scalable infrastructure incorporating multiorganizational clinical data for COVID-19 analytics. We expect this effort to save lives by enabling rapid collaboration among clinicians, researchers, and data scientists to identify treatments and specialized care and thereby reduce the immediate and long-term impacts of COVID-19.


Subject(s)
COVID-19 , Data Science/organization & administration , Information Dissemination , Intersectoral Collaboration , Computer Security , Data Analysis , Ethics Committees, Research , Government Regulation , Humans , National Institutes of Health (U.S.) , United States
18.
J Vis Exp ; (161)2020 07 14.
Article in English | MEDLINE | ID: mdl-32744524

ABSTRACT

Phantoms are essential tools for clinical training, surgical planning and the development of novel medical devices. However, it is challenging to create anatomically accurate head phantoms with realistic brain imaging properties because standard fabrication methods are not optimized to replicate any patient-specific anatomical detail and 3D printing materials are not optimized for imaging properties. In order to test and validate a novel navigation system for use during brain tumor surgery, an anatomically accurate phantom with realistic imaging and mechanical properties was required. Therefore, a phantom was developed using real patient data as input and 3D printing of molds to fabricate a patient-specific head phantom comprising the skull, brain and tumor with both ultrasound and X-ray contrast. The phantom also had mechanical properties that allowed the phantom tissue to be manipulated in a similar manner to how human brain tissue is handled during surgery. The phantom was successfully tested during a surgical simulation in a virtual operating room. The phantom fabrication method uses commercially available materials and is easy to reproduce. The 3D printing files can be readily shared, and the technique can be adapted to encompass many different types of tumor.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Phantoms, Imaging , Polyvinyl Alcohol , Surgery, Computer-Assisted/instrumentation , Tomography, X-Ray Computed/instrumentation , Ultrasonography/instrumentation , Humans , Printing, Three-Dimensional
19.
Int J Comput Assist Radiol Surg ; 15(9): 1445-1455, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32676869

ABSTRACT

PURPOSE: Management of vestibular schwannoma (VS) is based on tumour size as observed on T1 MRI scans with contrast agent injection. The current clinical practice is to measure the diameter of the tumour in its largest dimension. It has been shown that volumetric measurement is more accurate and more reliable as a measure of VS size. The reference approach to achieve such volumetry is to manually segment the tumour, which is a time intensive task. We suggest that semi-automated segmentation may be a clinically applicable solution to this problem and that it could replace linear measurements as the clinical standard. METHODS: Using high-quality software available for academic purposes, we ran a comparative study of manual versus semi-automated segmentation of VS on MRI with 5 clinicians and scientists. We gathered both quantitative and qualitative data to compare the two approaches; including segmentation time, segmentation effort and segmentation accuracy. RESULTS: We found that the selected semi-automated segmentation approach is significantly faster (167 s vs 479 s, [Formula: see text]), less temporally and physically demanding and has approximately equal performance when compared with manual segmentation, with some improvements in accuracy. There were some limitations, including algorithmic unpredictability and error, which produced more frustration and increased mental effort in comparison with manual segmentation. CONCLUSION: We suggest that semi-automated segmentation could be applied clinically for volumetric measurement of VS on MRI. In future, the generic software could be refined for use specifically for VS segmentation, thereby improving accuracy.


Subject(s)
Diagnosis, Computer-Assisted/methods , Machine Learning , Magnetic Resonance Imaging , Neurilemmoma/diagnostic imaging , Neuroma, Acoustic/diagnostic imaging , Pattern Recognition, Automated , Algorithms , Automation , Contrast Media/pharmacology , Humans , Image Processing, Computer-Assisted/methods , Neurilemmoma/pathology , Neuroimaging , Neuroma, Acoustic/pathology , Reproducibility of Results , Software
20.
Pharmacol Res Perspect ; 8(5): e00637, 2020 10.
Article in English | MEDLINE | ID: mdl-32881317

ABSTRACT

We used electronic medical record (EMR) data in the National Patient-Centered Clinical Research Network (PCORnet) to characterize "real-world" prescription patterns of Type 2 diabetes (T2D) medications. We identified a retrospective cohort of 613,203 adult patients with T2D from 33 datamarts (median patient number: 12,711) from 2012 through 2017 using a validated computable phenotype. We characterized outpatient T2D prescriptions for each patient in the 90 days before and after cohort entry, as well as demographics, comorbidities, non-T2D prescriptions, and clinical and laboratory variables in the 730 days prior to cohort entry. Approximately half of the individuals in the cohort were females and 20% Black. Hypertension (60.3%) and hyperlipidemia (50.5%) were highly prevalent. Most patients were prescribed either a single T2D drug class (42.2%) or had no evidence of a T2D prescription in the EMR (42.4%). A smaller percentage was prescribed multiple T2D drug types (15.4%). Among patients prescribed a single T2D drug type, metformin was the most common (42.6%), followed by insulin (18.2%) and sulfonylureas (13.9%). Newer classes represented approximately 13% of single T2D drug type prescriptions (dipeptidyl peptidase-4 inhibitors [6.6%], glucagon-like peptide-1 receptor agonists [2.5%], thiazolidinediones [2.0%], and sodium-glucose cotransporter-2 inhibitors [1.6%]). Among patients prescribed multiple T2D drug types, the most common combination was metformin and sulfonylureas (63.5%). Metformin-based regimens were highly prevalent in PCORnet's T2D population, whereas newer agents were prescribed less frequently. PCORnet is a novel source for the potential conduct of observational studies among patients with T2D.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hyperlipidemias/epidemiology , Hypertension/epidemiology , Hypoglycemic Agents/classification , Hypoglycemic Agents/therapeutic use , Adult , Aged , Comorbidity , Diabetes Mellitus, Type 2/ethnology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Drug Therapy, Combination , Electronic Health Records , Female , Glucagon-Like Peptide-1 Receptor/agonists , Humans , Insulin/therapeutic use , Male , Metformin/therapeutic use , Middle Aged , Patient-Centered Care , Retrospective Studies , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sulfonylurea Compounds/therapeutic use , Thiazolidinediones/therapeutic use , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL