Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.600
Filter
Add more filters

Publication year range
1.
Cell ; 186(17): 3674-3685.e14, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37494934

ABSTRACT

Epigenetic lesions that disrupt regulatory elements represent potential cancer drivers. However, we lack experimental models for validating their tumorigenic impact. Here, we model aberrations arising in isocitrate dehydrogenase-mutant gliomas, which exhibit DNA hypermethylation. We focus on a CTCF insulator near the PDGFRA oncogene that is recurrently disrupted by methylation in these tumors. We demonstrate that disruption of the syntenic insulator in mouse oligodendrocyte progenitor cells (OPCs) allows an OPC-specific enhancer to contact and induce Pdgfra, thereby increasing proliferation. We show that a second lesion, methylation-dependent silencing of the Cdkn2a tumor suppressor, cooperates with insulator loss in OPCs. Coordinate inactivation of the Pdgfra insulator and Cdkn2a drives gliomagenesis in vivo. Despite locus synteny, the insulator is CpG-rich only in humans, a feature that may confer human glioma risk but complicates mouse modeling. Our study demonstrates the capacity of recurrent epigenetic lesions to drive OPC proliferation in vitro and gliomagenesis in vivo.


Subject(s)
Brain Neoplasms , Epigenesis, Genetic , Glioma , Animals , Humans , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , Glioma/genetics , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Mutation , Oncogenes , Receptor, Platelet-Derived Growth Factor alpha/genetics
2.
Cell ; 184(9): 2503-2519.e17, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33838111

ABSTRACT

A general approach for heritably altering gene expression has the potential to enable many discovery and therapeutic efforts. Here, we present CRISPRoff-a programmable epigenetic memory writer consisting of a single dead Cas9 fusion protein that establishes DNA methylation and repressive histone modifications. Transient CRISPRoff expression initiates highly specific DNA methylation and gene repression that is maintained through cell division and differentiation of stem cells to neurons. Pairing CRISPRoff with genome-wide screens and analysis of chromatin marks establishes rules for heritable gene silencing. We identify single guide RNAs (sgRNAs) capable of silencing the large majority of genes including those lacking canonical CpG islands (CGIs) and reveal a wide targeting window extending beyond annotated CGIs. The broad ability of CRISPRoff to initiate heritable gene silencing even outside of CGIs expands the canonical model of methylation-based silencing and enables diverse applications including genome-wide screens, multiplexed cell engineering, enhancer silencing, and mechanistic exploration of epigenetic inheritance.


Subject(s)
CRISPR-Cas Systems , Cellular Reprogramming , Epigenesis, Genetic , Epigenome , Gene Editing , Induced Pluripotent Stem Cells/cytology , Neurons/cytology , Cell Differentiation , CpG Islands , DNA Methylation , Gene Silencing , Histone Code , Humans , Induced Pluripotent Stem Cells/metabolism , Neurons/metabolism , Protein Processing, Post-Translational
3.
Nat Immunol ; 24(8): 1382-1390, 2023 08.
Article in English | MEDLINE | ID: mdl-37500887

ABSTRACT

Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Humans , Microglia , Alzheimer Disease/genetics , Brain
4.
Cell ; 182(6): 1474-1489.e23, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32841603

ABSTRACT

Widespread changes to DNA methylation and chromatin are well documented in cancer, but the fate of higher-order chromosomal structure remains obscure. Here we integrated topological maps for colon tumors and normal colons with epigenetic, transcriptional, and imaging data to characterize alterations to chromatin loops, topologically associated domains, and large-scale compartments. We found that spatial partitioning of the open and closed genome compartments is profoundly compromised in tumors. This reorganization is accompanied by compartment-specific hypomethylation and chromatin changes. Additionally, we identify a compartment at the interface between the canonical A and B compartments that is reorganized in tumors. Remarkably, similar shifts were evident in non-malignant cells that have accumulated excess divisions. Our analyses suggest that these topological changes repress stemness and invasion programs while inducing anti-tumor immunity genes and may therefore restrain malignant progression. Our findings call into question the conventional view that tumor-associated epigenomic alterations are primarily oncogenic.


Subject(s)
Chromatin/metabolism , Chromosomes/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic/genetics , Cell Division , Cellular Senescence/genetics , Chromatin Immunoprecipitation Sequencing , Chromosomes/genetics , Cohort Studies , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Computational Biology , DNA Methylation/genetics , Epigenomics , HCT116 Cells , Humans , In Situ Hybridization, Fluorescence , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , RNA-Seq , Spatial Analysis , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
5.
Cell ; 176(6): 1265-1281.e24, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827681

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. VIDEO ABSTRACT.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Transcriptome/genetics , Adult , Base Sequence/genetics , Bone Marrow , Bone Marrow Cells/cytology , Cell Line, Tumor , Disease Progression , Female , Genotype , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/physiopathology , Machine Learning , Male , Middle Aged , Mutation , Prognosis , RNA , Signal Transduction , Single-Cell Analysis/methods , Tumor Microenvironment , Exome Sequencing/methods
6.
Cell ; 175(1): 101-116.e25, 2018 09 20.
Article in English | MEDLINE | ID: mdl-30220459

ABSTRACT

IDH1 mutations are common in low-grade gliomas and secondary glioblastomas and cause overproduction of (R)-2HG. (R)-2HG modulates the activity of many enzymes, including some that are linked to transformation and some that are probably bystanders. Although prior work on (R)-2HG targets focused on 2OG-dependent dioxygenases, we found that (R)-2HG potently inhibits the 2OG-dependent transaminases BCAT1 and BCAT2, likely as a bystander effect, thereby decreasing glutamate levels and increasing dependence on glutaminase for the biosynthesis of glutamate and one of its products, glutathione. Inhibiting glutaminase specifically sensitized IDH mutant glioma cells to oxidative stress in vitro and to radiation in vitro and in vivo. These findings highlight the complementary roles for BCATs and glutaminase in glutamate biosynthesis, explain the sensitivity of IDH mutant cells to glutaminase inhibitors, and suggest a strategy for maximizing the effectiveness of such inhibitors against IDH mutant gliomas.


Subject(s)
Glioma/metabolism , Glutamic Acid/biosynthesis , Transaminases/physiology , Cell Line, Tumor , Glioma/physiopathology , Glutamic Acid/drug effects , Glutarates/metabolism , Glutarates/pharmacology , Homeostasis/drug effects , Humans , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/physiology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/physiology , Mutation , Oxidation-Reduction/drug effects , Pregnancy Proteins/genetics , Pregnancy Proteins/physiology , Transaminases/antagonists & inhibitors , Transaminases/genetics
7.
Cell ; 170(3): 522-533.e15, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753427

ABSTRACT

Genome-wide association studies (GWASs) implicate the PHACTR1 locus (6p24) in risk for five vascular diseases, including coronary artery disease, migraine headache, cervical artery dissection, fibromuscular dysplasia, and hypertension. Through genetic fine mapping, we prioritized rs9349379, a common SNP in the third intron of the PHACTR1 gene, as the putative causal variant. Epigenomic data from human tissue revealed an enhancer signature at rs9349379 exclusively in aorta, suggesting a regulatory function for this SNP in the vasculature. CRISPR-edited stem cell-derived endothelial cells demonstrate rs9349379 regulates expression of endothelin 1 (EDN1), a gene located 600 kb upstream of PHACTR1. The known physiologic effects of EDN1 on the vasculature may explain the pattern of risk for the five associated diseases. Overall, these data illustrate the integration of genetic, phenotypic, and epigenetic analysis to identify the biologic mechanism by which a common, non-coding variant can distally regulate a gene and contribute to the pathogenesis of multiple vascular diseases.


Subject(s)
Coronary Artery Disease/genetics , Endothelin-1/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Vascular Diseases/genetics , Acetylation , Cells, Cultured , Chromatin/metabolism , Chromosome Mapping , Chromosomes, Human, Pair 6 , Endothelial Cells/cytology , Endothelin-1/blood , Epigenomics , Gene Editing , Gene Expression , Genome-Wide Association Study , Histones/metabolism , Humans , Muscle, Smooth, Vascular/cytology
8.
Cell ; 171(7): 1611-1624.e24, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29198524

ABSTRACT

The diverse malignant, stromal, and immune cells in tumors affect growth, metastasis, and response to therapy. We profiled transcriptomes of ∼6,000 single cells from 18 head and neck squamous cell carcinoma (HNSCC) patients, including five matched pairs of primary tumors and lymph node metastases. Stromal and immune cells had consistent expression programs across patients. Conversely, malignant cells varied within and between tumors in their expression of signatures related to cell cycle, stress, hypoxia, epithelial differentiation, and partial epithelial-to-mesenchymal transition (p-EMT). Cells expressing the p-EMT program spatially localized to the leading edge of primary tumors. By integrating single-cell transcriptomes with bulk expression profiles for hundreds of tumors, we refined HNSCC subtypes by their malignant and stromal composition and established p-EMT as an independent predictor of nodal metastasis, grade, and adverse pathologic features. Our results provide insight into the HNSCC ecosystem and define stromal interactions and a p-EMT program associated with metastasis.


Subject(s)
Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/pathology , Neoplasm Metastasis/pathology , Carcinoma, Squamous Cell/genetics , Cells, Cultured , Epithelial-Mesenchymal Transition , Gene Expression Profiling , Head and Neck Neoplasms/genetics , Humans , Male , Single-Cell Analysis , Tumor Microenvironment
9.
Cell ; 171(2): 305-320.e24, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28985562

ABSTRACT

The human genome folds to create thousands of intervals, called "contact domains," that exhibit enhanced contact frequency within themselves. "Loop domains" form because of tethering between two loci-almost always bound by CTCF and cohesin-lying on the same chromosome. "Compartment domains" form when genomic intervals with similar histone marks co-segregate. Here, we explore the effects of degrading cohesin. All loop domains are eliminated, but neither compartment domains nor histone marks are affected. Loss of loop domains does not lead to widespread ectopic gene activation but does affect a significant minority of active genes. In particular, cohesin loss causes superenhancers to co-localize, forming hundreds of links within and across chromosomes and affecting the regulation of nearby genes. We then restore cohesin and monitor the re-formation of each loop. Although re-formation rates vary greatly, many megabase-sized loops recovered in under an hour, consistent with a model where loop extrusion is rapid.


Subject(s)
Cell Cycle Proteins/metabolism , Cell Nucleus/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes/metabolism , Genome, Human , Repressor Proteins/metabolism , CCCTC-Binding Factor , Cell Line, Tumor , DNA-Binding Proteins , Enhancer Elements, Genetic , Histone Code , Humans , Nuclear Proteins/metabolism , Nucleosomes/metabolism , Phosphoproteins/metabolism , Cohesins
10.
Mol Cell ; 84(7): 1365-1376.e7, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38452764

ABSTRACT

Enhancer-gene communication is dependent on topologically associating domains (TADs) and boundaries enforced by the CCCTC-binding factor (CTCF) insulator, but the underlying structures and mechanisms remain controversial. Here, we investigate a boundary that typically insulates fibroblast growth factor (FGF) oncogenes but is disrupted by DNA hypermethylation in gastrointestinal stromal tumors (GISTs). The boundary contains an array of CTCF sites that enforce adjacent TADs, one containing FGF genes and the other containing ANO1 and its putative enhancers, which are specifically active in GIST and its likely cell of origin. We show that coordinate disruption of four CTCF motifs in the boundary fuses the adjacent TADs, allows the ANO1 enhancer to contact FGF3, and causes its robust induction. High-resolution micro-C maps reveal specific contact between transcription initiation sites in the ANO1 enhancer and FGF3 promoter that quantitatively scales with FGF3 induction such that modest changes in contact frequency result in strong changes in expression, consistent with a causal relationship.


Subject(s)
Chromatin , Enhancer Elements, Genetic , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin/genetics , Oncogenes , DNA/chemistry
11.
Cell ; 157(3): 580-94, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24726434

ABSTRACT

Developmental fate decisions are dictated by master transcription factors (TFs) that interact with cis-regulatory elements to direct transcriptional programs. Certain malignant tumors may also depend on cellular hierarchies reminiscent of normal development but superimposed on underlying genetic aberrations. In glioblastoma (GBM), a subset of stem-like tumor-propagating cells (TPCs) appears to drive tumor progression and underlie therapeutic resistance yet remain poorly understood. Here, we identify a core set of neurodevelopmental TFs (POU3F2, SOX2, SALL2, and OLIG2) essential for GBM propagation. These TFs coordinately bind and activate TPC-specific regulatory elements and are sufficient to fully reprogram differentiated GBM cells to "induced" TPCs, recapitulating the epigenetic landscape and phenotype of native TPCs. We reconstruct a network model that highlights critical interactions and identifies candidate therapeutic targets for eliminating TPCs. Our study establishes the epigenetic basis of a developmental hierarchy in GBM, provides detailed insight into underlying gene regulatory programs, and suggests attendant therapeutic strategies. PAPERCLIP:


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/pathology , Glioblastoma/genetics , Glioblastoma/pathology , Neoplastic Stem Cells/pathology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Brain Neoplasms/metabolism , Cell Differentiation , Cell Line, Tumor , Cells, Cultured , Co-Repressor Proteins/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Glioblastoma/metabolism , Humans , Neoplastic Stem Cells/metabolism , Nerve Tissue Proteins/metabolism , Oligodendrocyte Transcription Factor 2 , Regulatory Elements, Transcriptional , Transcription Factors/metabolism
12.
Nature ; 618(7966): 834-841, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286599

ABSTRACT

Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.


Subject(s)
Cell Transformation, Neoplastic , Dendritic Cells , Leukemia, Myeloid, Acute , Skin Neoplasms , Skin , Ultraviolet Rays , Humans , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Bone Marrow Cells/radiation effects , Cell Death/radiation effects , Cell Lineage/genetics , Cell Lineage/radiation effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/radiation effects , Clone Cells/metabolism , Clone Cells/pathology , Clone Cells/radiation effects , Dendritic Cells/metabolism , Dendritic Cells/pathology , Dendritic Cells/radiation effects , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation/radiation effects , Organ Specificity , Single-Cell Gene Expression Analysis , Skin Neoplasms/etiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Ultraviolet Rays/adverse effects , Skin/pathology , Skin/radiation effects
13.
Cell ; 152(3): 642-54, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23333102

ABSTRACT

Differences in chromatin organization are key to the multiplicity of cell states that arise from a single genetic background, yet the landscapes of in vivo tissues remain largely uncharted. Here, we mapped chromatin genome-wide in a large and diverse collection of human tissues and stem cells. The maps yield unprecedented annotations of functional genomic elements and their regulation across developmental stages, lineages, and cellular environments. They also reveal global features of the epigenome, related to nuclear architecture, that also vary across cellular phenotypes. Specifically, developmental specification is accompanied by progressive chromatin restriction as the default state transitions from dynamic remodeling to generalized compaction. Exposure to serum in vitro triggers a distinct transition that involves de novo establishment of domains with features of constitutive heterochromatin. We describe how these global chromatin state transitions relate to chromosome and nuclear architecture, and discuss their implications for lineage fidelity, cellular senescence, and reprogramming.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Epigenesis, Genetic , Gene-Environment Interaction , Genome-Wide Association Study , Cell Nucleus , Cellular Senescence , Embryonic Stem Cells/metabolism , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells/metabolism , Organ Specificity
14.
Cell ; 153(5): 1149-63, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23664763

ABSTRACT

Differentiation of human embryonic stem cells (hESCs) provides a unique opportunity to study the regulatory mechanisms that facilitate cellular transitions in a human context. To that end, we performed comprehensive transcriptional and epigenetic profiling of populations derived through directed differentiation of hESCs representing each of the three embryonic germ layers. Integration of whole-genome bisulfite sequencing, chromatin immunoprecipitation sequencing, and RNA sequencing reveals unique events associated with specification toward each lineage. Lineage-specific dynamic alterations in DNA methylation and H3K4me1 are evident at putative distal regulatory elements that are frequently bound by pluripotency factors in the undifferentiated hESCs. In addition, we identified germ-layer-specific H3K27me3 enrichment at sites exhibiting high DNA methylation in the undifferentiated state. A better understanding of these initial specification events will facilitate identification of deficiencies in current approaches, leading to more faithful differentiation strategies as well as providing insights into the rewiring of human regulatory programs during cellular transitions.


Subject(s)
Embryonic Stem Cells/metabolism , Epigenesis, Genetic , Transcription, Genetic , Acetylation , Cell Differentiation , Chromatin/chemistry , Chromatin/metabolism , DNA Methylation , Enhancer Elements, Genetic , Histones/metabolism , Humans , Methylation
15.
Cell ; 149(7): 1474-87, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22726435

ABSTRACT

A large fraction of the mammalian genome is organized into inactive chromosomal domains along the nuclear lamina. The mechanism by which these lamina associated domains (LADs) are established remains to be elucidated. Using genomic repositioning assays, we show that LADs, spanning the developmentally regulated IgH and Cyp3a loci contain discrete DNA regions that associate chromatin with the nuclear lamina and repress gene activity in fibroblasts. Lamina interaction is established during mitosis and likely involves the localized recruitment of Lamin B during late anaphase. Fine-scale mapping of LADs reveals numerous lamina-associating sequences (LASs), which are enriched for a GAGA motif. This repeated motif directs lamina association and is bound by the transcriptional repressor cKrox, in a complex with HDAC3 and Lap2ß. Knockdown of cKrox or HDAC3 results in dissociation of LASs/LADs from the nuclear lamina. These results reveal a mechanism that couples nuclear compartmentalization of chromatin domains with the control of gene activity.


Subject(s)
Chromatin/genetics , DNA-Binding Proteins/metabolism , Gene Silencing , Mitosis , Nuclear Lamina/metabolism , Transcription Factors/metabolism , Animals , Base Sequence , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/genetics , DNA/chemistry , Drosophila/metabolism , Histone Deacetylases/metabolism , Immunoglobulin Heavy Chains/genetics , Mice , NIH 3T3 Cells , Nuclear Envelope/metabolism , Transcription, Genetic
16.
Cell ; 151(6): 1185-99, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23217706

ABSTRACT

Reprogramming of cellular metabolism is a key event during tumorigenesis. Despite being known for decades (Warburg effect), the molecular mechanisms regulating this switch remained unexplored. Here, we identify SIRT6 as a tumor suppressor that regulates aerobic glycolysis in cancer cells. Importantly, loss of SIRT6 leads to tumor formation without activation of known oncogenes, whereas transformed SIRT6-deficient cells display increased glycolysis and tumor growth, suggesting that SIRT6 plays a role in both establishment and maintenance of cancer. By using a conditional SIRT6 allele, we show that SIRT6 deletion in vivo increases the number, size, and aggressiveness of tumors. SIRT6 also functions as a regulator of ribosome metabolism by corepressing MYC transcriptional activity. Lastly, Sirt6 is selectively downregulated in several human cancers, and expression levels of SIRT6 predict prognosis and tumor-free survival rates, highlighting SIRT6 as a critical modulator of cancer metabolism. Our studies reveal SIRT6 to be a potent tumor suppressor acting to suppress cancer metabolism.


Subject(s)
Neoplasms/metabolism , Sirtuins/metabolism , Animals , Cell Proliferation , Down-Regulation , Fibroblasts/metabolism , Gene Knockout Techniques , Glycolysis , Humans , Mice , Mice, Nude , Mice, SCID , Neoplasm Transplantation , Proto-Oncogene Proteins c-myc/metabolism , Sirtuins/genetics , Transcription, Genetic , Transplantation, Heterologous , Tumor Suppressor Proteins/genetics
17.
Nature ; 595(7866): 309-314, 2021 07.
Article in English | MEDLINE | ID: mdl-33953401

ABSTRACT

Epigenetic dysregulation is a defining feature of tumorigenesis that is implicated in immune escape1,2. Here, to identify factors that modulate the immune sensitivity of cancer cells, we performed in vivo CRISPR-Cas9 screens targeting 936 chromatin regulators in mouse tumour models treated with immune checkpoint blockade. We identified the H3K9 methyltransferase SETDB1 and other members of the HUSH and KAP1 complexes as mediators of immune escape3-5. We also found that amplification of SETDB1 (1q21.3) in human tumours is associated with immune exclusion and resistance to immune checkpoint blockade. SETDB1 represses broad domains, primarily within the open genome compartment. These domains are enriched for transposable elements (TEs) and immune clusters associated with segmental duplication events, a central mechanism of genome evolution6. SETDB1 loss derepresses latent TE-derived regulatory elements, immunostimulatory genes, and TE-encoded retroviral antigens in these regions, and triggers TE-specific cytotoxic T cell responses in vivo. Our study establishes SETDB1 as an epigenetic checkpoint that suppresses tumour-intrinsic immunogenicity, and thus represents a candidate target for immunotherapy.


Subject(s)
Gene Silencing , Histone-Lysine N-Methyltransferase/metabolism , Neoplasms/genetics , Neoplasms/immunology , Animals , Antigens, Viral/immunology , CRISPR-Cas Systems/genetics , Chromatin/genetics , Chromatin/metabolism , DNA Transposable Elements/genetics , Disease Models, Animal , Female , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Mice , Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology
18.
Nat Methods ; 20(11): 1790-1801, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37710017

ABSTRACT

Understanding the dynamic pathogenesis and treatment response in pulmonary diseases requires probing the lung at cellular resolution in real time. Despite advances in intravital imaging, optical imaging of the lung during active respiration and circulation has remained challenging. Here, we introduce the crystal ribcage: a transparent ribcage that allows multiscale optical imaging of the functioning lung from whole-organ to single-cell level. It enables the modulation of lung biophysics and immunity through intravascular, intrapulmonary, intraparenchymal and optogenetic interventions, and it preserves the three-dimensional architecture, air-liquid interface, cellular diversity and respiratory-circulatory functions of the lung. Utilizing these capabilities on murine models of pulmonary pathologies we probed remodeling of respiratory-circulatory functions at the single-alveolus and capillary levels during disease progression. The crystal ribcage and its broad applications presented here will facilitate further studies of nearly any pulmonary disease as well as lead to the identification of new targets for treatment strategies.


Subject(s)
Lung , Rib Cage , Mice , Animals , Intravital Microscopy
19.
PLoS Pathog ; 20(3): e1012063, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466776

ABSTRACT

BACKGROUND: Epigenome-wide association studies (EWAS) have identified CpG sites associated with HIV infection in blood cells in bulk, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. In this study, we aim to identify differentially methylated CpG sites for HIV infection in immune cell types: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes. METHODS: Applying a computational deconvolution method, we performed a cell-type based EWAS for HIV infection in three independent cohorts (Ntotal = 1,382). DNA methylation in blood or in peripheral blood mononuclear cells (PBMCs) was profiled by an array-based method and then deconvoluted by Tensor Composition Analysis (TCA). The TCA-computed CpG methylation in each cell type was first benchmarked by bisulfite DNA methylation capture sequencing in a subset of the samples. Cell-type EWAS of HIV infection was performed in each cohort separately and a meta-EWAS was conducted followed by gene set enrichment analysis. RESULTS: The meta-analysis unveiled a total of 2,021 cell-type unique significant CpG sites for five inferred cell types. Among these inferred cell-type unique CpG sites, the concordance rate in the three cohorts ranged from 96% to 100% in each cell type. Cell-type level meta-EWAS unveiled distinct patterns of HIV-associated differential CpG methylation, where 74% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of unique HIV-associated CpG sites (N = 1,624) compared to any other cell type. Genes harboring significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CD4+ T-cells: NLRC5, CX3CR1, B cells: IFI44L, NK cells: IL12R, monocytes: IRF7), and in oncogenesis (e.g. CD4+ T-cells: BCL family, PRDM16, monocytes: PRDM16, PDCD1LG2). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis that were enriched among interferon-α and -γ, TNF-α, inflammatory response, and apoptotic pathways. CONCLUSION: Our findings uncovered computationally inferred cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding HIV pathogenesis.


Subject(s)
DNA Methylation , HIV Infections , Humans , Epigenome , Epigenesis, Genetic , Leukocytes, Mononuclear , HIV Infections/genetics , CpG Islands , Carcinogenesis/genetics , Genome-Wide Association Study/methods , Intracellular Signaling Peptides and Proteins/genetics
20.
Cell ; 144(4): 513-25, 2011 Feb 18.
Article in English | MEDLINE | ID: mdl-21335234

ABSTRACT

Histone H3K4 methylation is associated with active genes and, along with H3K27 methylation, is part of a bivalent chromatin mark that typifies poised developmental genes in embryonic stem cells (ESCs). However, its functional roles in ESC maintenance and differentiation are not established. Here we show that mammalian Dpy-30, a core subunit of the SET1/MLL histone methyltransferase complexes, modulates H3K4 methylation in vitro, and directly regulates chromosomal H3K4 trimethylation (H3K4me3) throughout the mammalian genome. Depletion of Dpy-30 does not affect ESC self-renewal, but significantly alters the differentiation potential of ESCs, particularly along the neural lineage. The differentiation defect is accompanied by defects in gene induction and in H3K4 methylation at key developmental loci. Our results strongly indicate an essential functional role for Dpy-30 and SET1/MLL complex-mediated H3K4 methylation, as a component of the bivalent mark, at developmental genes during the ESC fate transitions.


Subject(s)
Embryonic Stem Cells/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , Animals , Cell Differentiation , Cell Line , Cell Lineage , DNA-Binding Proteins , Embryonic Stem Cells/cytology , Gene Knockdown Techniques , Genome , Histone-Lysine N-Methyltransferase/metabolism , Methylation , Mice , Neurons/cytology , Nuclear Proteins/genetics , Transcription, Genetic , Tretinoin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL