Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
Add more filters

Publication year range
1.
Phytopathology ; 113(7): 1185-1191, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36611232

ABSTRACT

Evolutionarily, early-branching xanthomonads, also referred to as clade-1 xanthomonads, include major plant pathogens, most of which colonize monocotyledonous plants. Seven species have been validly described, among them the two sugarcane pathogens Xanthomonas albilineans and Xanthomonas sacchari, as well as Xanthomonas translucens, which infects small-grain cereals and diverse grasses but also asparagus and pistachio trees. Single-gene sequencing and genomic approaches have indicated that this clade likely contains more, yet-undescribed species. In this study, we sequenced representative strains of three novel species using long-read sequencing technology. Xanthomonas campestris pv. phormiicola strain CFBP 8444 causes bacterial streak on New Zealand flax, another monocotyledonous plant. Xanthomonas sp. strain CFBP 8443 has been isolated from common bean, and Xanthomonas sp. strain CFBP 8445 originated from banana. Complete assemblies of the chromosomes confirmed their unique phylogenetic position within clade 1 of Xanthomonas. Genome mining revealed novel genetic features, hitherto undescribed in other members of the Xanthomonas genus. In strain CFBP 8444, we identified genes related to the synthesis of coronatine-like compounds, a phytotoxin produced by several pseudomonads, which raises interesting questions about the evolution and pathogenicity of this pathogen. Furthermore, strain CFBP 8444 was found to contain a second, atypical flagellar gene cluster in addition to the canonical flagellar gene cluster. Overall, this research represents an important step toward better understanding the evolutionary history and biology of early-branching xanthomonads.


Subject(s)
Flagellin , Xanthomonas , Flagellin/genetics , Phylogeny , Plant Diseases/microbiology , Whole Genome Sequencing
2.
Genomics ; 114(1): 9-22, 2022 01.
Article in English | MEDLINE | ID: mdl-34798282

ABSTRACT

Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26-41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.


Subject(s)
Genome, Mitochondrial , Plasmodiophorida , Genomics , Metagenomics , Plasmodiophorida/genetics
3.
Mol Plant Microbe Interact ; 35(11): 989-1005, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35816413

ABSTRACT

The molecular interactions between Polymyxa betae, the protist vector of sugar beet viruses, beet necrotic yellow vein virus (BNYVV), the causal agent of rhizomania, and Beta vulgaris have not been extensively studied. Here, the transmission of BNYVV to sugar beet by P. betae zoospores was optimized using genetically characterized organisms. Molecular interactions of aviruliferous and viruliferous protist infection on sugar beet were highlighted by transcriptomic analysis. P. betae alone induced limited gene expression changes in sugar beet, as a biotrophic asymptomatic parasite. Most differentially expressed plant genes were down-regulated and included resistance gene analogs and cell wall peroxidases. Several enzymes involved in stress regulation, such as the glutathione-S-transferases, were significantly induced. With BNYVV, the first stages of the P. betae life cycle on sugar beet were accelerated with a faster increase of relative protist DNA level and an earlier appearance of sporangia and sporosori in plants roots. A clear activation of plant defenses and the modulation of genes involved in plant cell wall metabolism were observed. The P. betae transcriptome in the presence of BNYVV revealed induction of genes possibly involved in the switch to the survival stage. The interactions were different depending on the presence or absence of the virus. P. betae alone alleviates plant defense response, playing hide-and-seek with sugar beet and allowing for their mutual development. Conversely, BNYVV manipulates plant defense and promotes the rapid invasion of plant roots by P. betae. This accelerated colonization is accompanied by the development of thick-walled resting spores, supporting the virus survival. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Beta vulgaris , Plant Viruses , Plasmodiophorida , RNA Viruses , Beta vulgaris/parasitology , RNA Viruses/physiology , Plant Diseases/genetics , Plant Viruses/physiology , Sugars
4.
J Gen Virol ; 102(2)2021 02.
Article in English | MEDLINE | ID: mdl-33215984

ABSTRACT

Beet soil-borne virus (BSBV) is a sugar beet pomovirus frequently associated with Beet necrotic yellow veins virus, the causal agent of the rhizomania disease. BSBV has been detected in most of the major beet-growing regions worldwide, yet its impact on this crop remains unclear. With the aim to understand the life cycle of this virus and clarify its putative pathogenicity, agroinfectious clones have been engineered for each segment of its tripartite genome. The biological properties of these clones were then studied on different plant species. Local infection was obtained on agroinfiltrated leaves of Beta macrocarpa. On leaves of Nicotiana benthamiana, similar results were obtained, but only when heterologous viral suppressors of RNA silencing were co-expressed or in a transgenic line down regulated for both dicer-like protein 2 and 4. On sugar beet, local infection following agroinoculation was obtained on cotyledons, but not on other tested plant parts. Nevertheless, leaf symptoms were observed on this host via sap inoculation. Likewise, roots were efficiently mechanically infected, highlighting low frequency of root necrosis and constriction, and enabling the demonstration of transmission by the vector Polymyxa betae. Altogether, the entire viral cycle was reproduced, validating the constructed agroclones as efficient inoculation tools, paving the way for further studies on BSBV and its related pathosystem.


Subject(s)
Nicotiana/virology , Plant Viruses/isolation & purification , RNA Interference , RNA Viruses/pathogenicity , Plant Diseases/virology , Plant Leaves/virology , Plant Viruses/genetics , RNA Viruses/genetics
5.
Arch Virol ; 166(6): 1759-1762, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33745066

ABSTRACT

The whole genome sequence of a begomovirus (family Geminiviridae) infecting Muntingia calabura L. (family Muntingiaceae) from the province of Guayas in Ecuador was determined in this work. The major symptom observed on this plant species was yellow spots on leaves. The nucleotide sequences of three DNA-A clones and one DNA-B clone were compared to those of other begomoviruses. The DNA-A clones displayed the highest similarity to isolates of pepper leafroll virus (PepLRV), with 87.4 to 88.1% sequence identity. Likewise, the DNA-B clone showed the highest similarity (79.3-79.6% sequence identity) to PepLRV isolates. According to the demarcation criteria for begomovirus species, the begomovirus described in this work, for which we propose the name "muntingia yellow spot virus", represents a novel species. To our best knowledge, this is the first report of a begomovirus infecting a plant of the family Muntingiaceae.


Subject(s)
Begomovirus/genetics , Plant Diseases/virology , Plants/virology , Begomovirus/isolation & purification , DNA, Viral/genetics , Ecuador , Phyllachorales
6.
J Chem Ecol ; 47(8-9): 755-767, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34463893

ABSTRACT

Banana plants are affected by various viral diseases, among which the most devastating is the "bunchy top", caused by the Banana bunchy top virus (BBTV) and transmitted by the aphid Pentalonia nigronervosa Coquerel. The effect of BBTV on attraction mechanisms of dessert and plantain banana plants on the vector remains far from elucidated. For that, attractiveness tests were carried out using a two columns olfactometer for apterous aphids, and a flight cage experiment for alate aphids. Volatile Organic Compounds (VOCs) emitted by either healthy or BBTV-infected banana plants were identified using a dynamic extraction system and gas-chromatography mass-spectrometry (GC-MS) analysis. Behavioral results revealed a stronger attraction of aphids towards infected banana plants (independently from the variety), and towards the plantain variety (independently from the infection status). GC-MS results revealed that infected banana plants produced VOCs of the same mixture as healthy banana plants but in much higher quantities. In addition, VOCs produced by dessert and plantain banana plants were different in nature, and plantains produced higher quantities than dessert banana trees. This work opens interesting opportunities for biological control of P. nigronervosa, for example by luring away the aphid from banana plants through manipulation of olfactory cues.


Subject(s)
Aphids/physiology , Babuvirus/physiology , Musa/chemistry , Volatile Organic Compounds/analysis , Animals , Behavior, Animal/drug effects , Gas Chromatography-Mass Spectrometry , Insect Control , Musa/growth & development , Musa/virology , Plant Diseases/virology , Principal Component Analysis , Volatile Organic Compounds/pharmacology
7.
Phytopathology ; 111(4): 611-616, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32997607

ABSTRACT

Xanthomonas theicola is the causal agent of bacterial canker on tea plants. There is no complete genome sequence available for X. theicola, a close relative of the species X. translucens and X. hyacinthi, thus limiting basic research for this group of pathogens. Here, we release a high-quality complete genome sequence for the X. theicola type strain, CFBP 4691T. Single-molecule real-time sequencing with a mean coverage of 264× revealed two contigs of 4,744,641 bp (chromosome) and 40,955 bp (plasmid) in size. Genome mining revealed the presence of nonribosomal peptide synthases, two CRISPR systems, the Xps type 2 secretion system, and the Hrp type 3 secretion system. Surprisingly, this strain encodes an additional type 2 secretion system and a novel type 3 secretion system with enigmatic function, hitherto undescribed for xanthomonads. Four type 3 effector genes were found on complete or partial transposons, suggesting a role of transposons in effector gene evolution and spread. This genome sequence fills an important gap to better understand the biology and evolution of the early-branching xanthomonads, also known as clade-1 xanthomonads.


Subject(s)
Genome, Bacterial , Xanthomonas , Genome, Bacterial/genetics , Phylogeny , Plant Diseases , Tea , Xanthomonas/genetics
8.
Plant Dis ; 104(1): 13-15, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31660797

ABSTRACT

Xanthomonas translucens pv. translucens causes bacterial leaf streak and bacterial blight diseases of barley. This pathogen limits barley production globally but remains understudied, with limited genomic resources. To better understand the biology of this X. translucens subgroup, we sequenced the complete genome of the X. translucens pv. translucens strain UPB886.


Subject(s)
Genome, Bacterial , Xanthomonas , Genome, Bacterial/genetics , Genomics , Hordeum/microbiology , Plant Diseases/microbiology , Xanthomonas/genetics
9.
Appl Environ Microbiol ; 85(20)2019 10 15.
Article in English | MEDLINE | ID: mdl-31420337

ABSTRACT

This study provides a phylogeographic insight into the population diversity of Xanthomonas translucens strains causing bacterial leaf streak disease of small-grain cereals in Iran. Among the 65 bacterial strains isolated from wheat, barley, and gramineous weeds in eight Iranian provinces, multilocus sequence analysis and typing (MLSA and MLST) of four housekeeping genes (dnaK, fyuA, gyrB, and rpoD), identified 57 strains as X. translucens pv. undulosa, while eight strains were identified as X. translucens pv. translucens. Although the pathogenicity patterns on oat and ryegrass weed species varied among the strains, all X. translucens pv. undulosa strains were pathogenic on barley, Harding's grass, rye (except for XtKm35) and wheat, and all X. translucens pv. translucens strains were pathogenic on barley and Harding's grass, while none of the latter group was pathogenic on rye or wheat (except for XtKm18). MLST using the 65 strains isolated in Iran, as well as the sequences of the four genes from 112 strains of worldwide origin retrieved from the GenBank database, revealed higher genetic diversity (i.e., haplotype frequency, haplotype diversity, and percentage of polymorphic sites) among the Iranian population of X. translucens than among the North American strains of the pathogen. High genetic diversity of the BLS pathogen in Iran was in congruence with the fact that the Iranian Plateau is considered the center of origin of cultivated wheat. However, further studies using larger collections of strains are warranted to precisely elucidate the global population diversity and center of origin of the pathogen.IMPORTANCE Bacterial leaf streak (BLS) of small-grain cereals (i.e., wheat and barley) is one of the economically important diseases of gramineous crops worldwide. The disease occurs in many countries across the globe, with particular importance in regions characterized by high levels of precipitation. Two genetically distinct xanthomonads-namely, Xanthomonas translucens pv. undulosa and X. translucens pv. translucens-have been reported to cause BLS disease on small-grain cereals. As seed-borne pathogens, the causal agents are included in the A2 list of quarantine pathogens by the European and Mediterranean Plant Protection Organization (EPPO). Despite its global distribution and high economic importance, the population structure, genetic diversity, and phylogeography of X. translucens remain undetermined. This study, using MLSA and MLST, provides a global-scale phylogeography of X. translucens strains infecting small-grain cereals. Based on the diversity parameters, neutrality indices, and population structure, we observe higher genetic diversity of the BLS pathogen in Iran, which is geographically close to the center of origin of common wheat, than has so far been observed in other areas of the world, including North America. The results obtained in this study provide a novel insight into the genetic diversity and population structure of the BLS pathogen of small-grain cereals on a global scale.


Subject(s)
Edible Grain/microbiology , Genetic Variation , Multilocus Sequence Typing , Plant Diseases/microbiology , Xanthomonas/genetics , Iran
10.
Arch Virol ; 164(8): 2215-2219, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31165276

ABSTRACT

By screening a collection of Fusarium spp. for the presence of dsRNA, the Fusarium redolens strain A63-1 was found harboring a pattern of multiple dsRNA bands when analyzed by agarose gel electrophoresis. Using NextSeq Illumina sequencing, the full sequences of eight dsRNA molecules were determined, compared to databases, and gathered into a new viral genome. This novel virus shares similarities with mycoviruses that were recently grouped in the proposed family "Polymycoviridae". Hence, the name "Fusarium redolens polymycovirus 1" is proposed for this virus. Each viral dsRNA contains only one ORF, except dsRNA 7, which has an additional one. Based on amino acid sequence similarities, the functions of the proteins encoded by dsRNA 1-4 can be hypothesized. On the other hand, the putative proteins encoded by dsRNA 5-8 exhibit no relevant homology to known proteins. In this report, the full genome sequence of this new virus is presented along with a primary bioinformatics analysis.


Subject(s)
Fungal Viruses/genetics , Fusarium/virology , Genome, Viral/genetics , Amino Acid Sequence , Base Sequence , Open Reading Frames/genetics , Phylogeny , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/genetics
11.
Oecologia ; 191(1): 113-125, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31342255

ABSTRACT

Effects of plants on herbivores can cascade up the food web and modulate the abundance of higher trophic levels. In agro-ecosystems, plant viruses can affect the interactions between crops, crop pests, and natural enemies. Little is known, however, about the effects of viruses on higher trophic levels, including parasitoids and their ability for pest regulation. We tested the hypothesis that a plant virus affects parasitoid foraging behaviour through cascading effects on higher trophic levels. We predicted that the semi-persistent Beet yellows virus (BYV) would influence plant (Beta vulgaris) quality, as well as aphid host (Aphis fabae) quality for a parasitoid Lysiphlebus fabarum. We determined amino acid and sugar content in healthy and infected plants (first trophic level), lipid content and body size of aphids (second trophic level) fed on both plants, as well as foraging behaviour and body size of parasitoids (third trophic level) that developed on aphids fed on both plants. Our results showed that virus infection increased sugars and decreased total amino acid content in B. vulgaris. We further observed an increase in aphid size without modification in host aphid quality (i.e., lipid content), and a slight effect on parasitoid behaviour through an increased number of antennal contacts with host aphids. Although the BYV virus clearly affected the first two trophic levels, it did not affect development or emergence of parasitoids. As the parasitoid L. fabarum does not seem to be affected by the virus, we discuss the possibility of using it for the development of targeted biological control against aphids.


Subject(s)
Aphids , Beta vulgaris , Closterovirus , Wasps , Animals , Ecosystem , Host-Parasite Interactions , Up-Regulation
12.
Phytopathology ; 109(2): 200-209, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30365394

ABSTRACT

Insect-transmitted plant diseases caused by viruses, phytoplasmas, and bacteria share many features in common regardless of the causal agent. This perspective aims to show how a model framework, developed originally for plant virus diseases, can be modified for the case of diseases incited by Xylella fastidiosa. In particular, the model framework enables the specification of a simple but quite general invasion criterion defined in terms of key plant, pathogen, and vector parameters and, importantly, their interactions, which determine whether or not an incursion or isolated outbreak of a pathogen will lead to establishment, persistence, and subsequent epidemic development. Hence, this approach is applicable to the wide range of X. fastidiosa-incited diseases that have recently emerged in southern Europe, each with differing host plant, pathogen subspecies, and vector identities. Of particular importance are parameters relating to vector abundance and activity, transmission characteristics, and behavior in relation to preferences for host infection status. Some gaps in knowledge with regard to the developing situation in Europe are noted.


Subject(s)
Plant Diseases/microbiology , Xylella , Animals , Europe , Host-Pathogen Interactions , Insect Vectors/microbiology
13.
Arch Virol ; 163(2): 555-558, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29058148

ABSTRACT

At least six begomovirus species have been reported infecting tomato in Venezuela. In this study the complete genomes of two tomato-infecting begomovirus isolates (referred to as Trujillo-427 and Zulia-1084) were cloned and sequenced. Both isolates showed the typical genome organization of New World bipartite begomoviruses, with DNA-A genomic components displaying 88.8% and 90.3% similarity with established begomoviruses, for isolates Trujillo-427 and Zulia-1084, respectively. In accordance to the guidelines for begomovirus species demarcation, the Trujillo-427 isolate represents a putative new species and the name "Tomato wrinkled mosaic virus" is proposed. Meanwhile, Zulia-1084 represents a putative new strain classifiable within species Tomato chlorotic leaf distortion virus, for which a recombinant origin is suggested.


Subject(s)
Begomovirus/genetics , Begomovirus/isolation & purification , Genome, Viral , Plant Diseases/virology , Recombination, Genetic , Solanum lycopersicum/virology , Base Sequence , Begomovirus/classification , Molecular Sequence Data , Phylogeny , Venezuela
14.
J Gen Virol ; 98(8): 1999-2000, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28786782

ABSTRACT

The family Virgaviridae is a family of plant viruses with rod-shaped virions, a ssRNA genome with a 3'-terminal tRNA-like structure and a replication protein typical of alpha-like viruses. Differences in the number of genome components, genome organization and the mode of transmission provide the basis for genus demarcation. Tobacco mosaic virus (genus Tobamovirus) was the first virus to be discovered (in 1886); it is present in high concentrations in infected plants, is extremely stable and has been extensively studied. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Virgaviridae, which is available at www.ictv.global/report/virgaviridae.


Subject(s)
Plant Viruses/classification , Genome, Viral , Plant Diseases/virology , Plant Viruses/genetics , Plant Viruses/isolation & purification , Plant Viruses/physiology , Plants/virology , RNA, Viral/genetics
15.
Virus Genes ; 53(6): 939-942, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28639222

ABSTRACT

Tomato mild yellow leaf curl Aragua virus (ToMYLCV) is a begomovirus first reported infecting tomato (Solanum lycopersicum) and milkweed (Euphorbia heterophylla) in Venezuela. In this study, a ToMYLCV isolate (Zulia-219) was completely sequenced and its host range was evaluated. The DNA-A and DNA-B components of isolate Zulia-219 showed 93 and 85% nucleotide sequence identity with the respective counterparts of the ToMYLCV type strain. According to current demarcation criteria for begomovirus species, Zulia-219 is a new strain of ToMYLCV. Interestingly, tomato plants inoculated with ToMYLCV Zulia-219 displayed severe symptoms, including severe chlorotic leaf curling, in contrast to mild symptoms associated with the type strain of this begomovirus. These results indicate potential risks associated with this new ToMYLCV strain for tomato production in Venezuela.


Subject(s)
Begomovirus/genetics , Plant Diseases/virology , Plant Leaves/virology , Solanum lycopersicum/virology , Animals , Base Sequence/genetics , DNA, Viral/genetics , Genome, Viral/genetics , Hemiptera/virology , Host Specificity/genetics , Phylogeny , Sequence Analysis, DNA/methods , Sequence Homology, Nucleic Acid
16.
Phytopathology ; 107(5): 519-527, 2017 05.
Article in English | MEDLINE | ID: mdl-28112596

ABSTRACT

Prevalence of Xanthomonas translucens, which causes cereal leaf streak (CLS) in cereal crops and bacterial wilt in forage and turfgrass species, has increased in many regions in recent years. Because the pathogen is seedborne in economically important cereals, it is a concern for international and interstate germplasm exchange and, thus, reliable and robust protocols for its detection in seed are needed. However, historical confusion surrounding the taxonomy within the species has complicated the development of accurate and reliable diagnostic tools for X. translucens. Therefore, we sequenced genomes of 15 X. translucens strains representing six different pathovars and compared them with additional publicly available X. translucens genome sequences to obtain a genome-based phylogeny for robust classification of this species. Our results reveal three main clusters: one consisting of pv. cerealis, one consisting of pvs. undulosa and translucens, and a third consisting of pvs. arrhenatheri, graminis, phlei, and poae. Based on genomic differences, diagnostic loop-mediated isothermal amplification (LAMP) primers were developed that clearly distinguish strains that cause disease on cereals, such as pvs. undulosa, translucens, hordei, and secalis, from strains that cause disease on noncereal hosts, such as pvs. arrhenatheri, cerealis, graminis, phlei, and poae. Additional LAMP assays were developed that selectively amplify strains belonging to pvs. cerealis and poae, distinguishing them from other pathovars. These primers will be instrumental in diagnostics when implementing quarantine regulations to limit further geographic spread of X. translucens pathovars.


Subject(s)
Genome, Bacterial/genetics , Genomics , Plant Diseases/microbiology , Xanthomonas/classification , DNA Primers/genetics , Nucleic Acid Amplification Techniques , Phylogeny , Sensitivity and Specificity , Species Specificity , Xanthomonas/genetics , Xanthomonas/isolation & purification
17.
Microbiol Res ; 283: 127697, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522411

ABSTRACT

The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.


Subject(s)
Bacillus anthracis , Bacillus cereus , Animals , Humans , Anti-Bacterial Agents/pharmacology , Phylogeny
18.
Sci Rep ; 14(1): 2993, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38316887

ABSTRACT

Pentalonia nigronervosa Coquerel (Hemiptera: Aphididae) is the vector of the Banana Bunchy Top Virus (BBTV), the most serious viral disease of banana (Musa spp.) in the world. Before acquiring the virus, the vector is more attracted to infected banana plants in response to the increased emissions of volatile organic compounds (VOCs). Here, we test the hypothesis that BBTV acquisition directly modifies the preference of P. nigronervosa for infected banana plants, and that the change in preference results from the alteration of the organs linked to the VOC detection or to the behaviour of the vector. We found that the preference of P. nigronervosa for infected banana plants reverses after virus acquisition in dessert banana, while it remains similar between healthy and infected banana plants before and after the acquisition of BBTV. At the same time, aphids reared on infected bananas had smaller forewing areas and hind tibia length than aphids reared on healthy bananas, although the number of secondary rhinaria on the antennae was lower on dessert banana-reared aphids than plantain-reared aphids, this was not affected by the infection status of the aphid. These results support the "vector manipulation hypothesis-VMH" of pathogens to promote their spread. They have implications for the BBTV management.


Subject(s)
Aphids , Babuvirus , Musa , Animals , Aphids/physiology , Musa/physiology , Plant Diseases
19.
EFSA J ; 22(7): e8832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974924

ABSTRACT

Following a request from the European Commission, the EFSA Panel on Plant Health performed a quantitative risk assessment for the EU of Phlyctinus callosus (Coleoptera: Curculionidae), a polyphagous pest occurring in Australia, New Zealand and South Africa. The current risk assessment focused on potential pathways for entry, the climatic conditions allowing establishment, the expected spread capacity and the impact considering a time horizon of 10 years (2023-2032). The Panel identified the import of apples, cut flowers and table grapes as the most relevant entry pathways. Over the next 10 years, an annual median estimate of approximately 49.5 (90% certainty range, CR, ranging from 4.0 to 881.2) potential P. callosus founder populations are expected. When the probability of establishment is considered and climatic indicators are used to define the areas in the EU where establishment is possible, the model estimated a median of 1 founder population every 1.3 years (90% CR: 1 every 30.8 years to 23.3 per year) in the scenario where the areas are defined by the union of all the climatic indicators and 1 founder population every 11.9 years (90% CR: 1 every 256.6 years to 2.5 per year) in the scenario where establishment is possible only in the areas defined by the climatic indicator of minimum soil temperature. The estimated number of founder populations per year is mostly driven by the probability of establishment in the rural areas, infestation rate in table grapes and the probability of transfer to a suitable host in the rural area. The risk of entry for cut flowers and apples is substantially lower than the risk from the table grapes. If such founder populations were to establish, P. callosus is estimated to spread by natural dispersal and common agricultural practices at a rate of 15.5 m/year (90% CR 5.1-46.8 m/year) after a lag phase of 4.0 years (90% CR 1.3-8.7 years). The impact, expressed as percentage loss of the production directly attributable to P. callosus in the areas where establishment is possible and assuming farmers do not apply specific control measures was estimated at 0.5% (90% CR 0.01%-2.8%) for cut flowers/foliage, 5.2% (90% CR 2.2%-11.7%) for apples and 2% (90% CR 1.3%-5.2%) for table grapes. Options for risk reduction are discussed, but their effectiveness is not quantified.

20.
EFSA J ; 22(7): e8866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38974922

ABSTRACT

EFSA requested its Scientific Committee to prepare a guidance document on appraising and integrating evidence from epidemiological studies for use in EFSA's scientific assessments. The guidance document provides an introduction to epidemiological studies and illustrates the typical biases, which may be present in different epidemiological study designs. It then describes key epidemiological concepts relevant for evidence appraisal. This includes brief explanations for measures of association, exposure assessment, statistical inference, systematic error and effect modification. The guidance then describes the concept of external validity and the principles of appraising epidemiological studies. The customisation of the study appraisal process is explained including tailoring of tools for assessing the risk of bias (RoB). Several examples of appraising experimental and observational studies using a RoB tool are annexed to the document to illustrate the application of the approach. The latter part of this guidance focuses on different steps of evidence integration, first within and then across different streams of evidence. With respect to risk characterisation, the guidance considers how evidence from human epidemiological studies can be used in dose-response modelling with several different options being presented. Finally, the guidance addresses the application of uncertainty factors in risk characterisation when using evidence from human epidemiological studies.

SELECTION OF CITATIONS
SEARCH DETAIL