Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Environ Monit Assess ; 194(8): 578, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35819550

ABSTRACT

For pesticide registrations in the USA under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as implemented by the United States Environmental Protection Agency, drinking water risk assessments for groundwater sources are based on standard scenario modeling concentration estimates. The conceptual model for the drinking water protection goals is defined in terms of (1) a rural well in or near a relatively high pesticide use area, a shallow well (4-10 m); (2) long-term, single-station weather data; (3) soils characterized as highly leachable; (4) upper-end or surrogate, worst-case environmental fate parameters; and (5) maximum, annual use rates repeated every year. To date, monitoring data have not been quantitatively incorporated into FIFRA drinking water risk assessment; even though considerable, US national-scale temporal and spatial data for some chemistries exists. Investigations into drinking water monitoring data development have historically focused on single-source efforts that may not represent wide geographies and/or time periods, whereas Safe Drinking Water Act groundwater monitoring data are focused on a community-level scale rather than an individual, shallow, rural well. In the current case study, US national-scale, rural well data for the herbicide atrazine was collected, quality controlled, and combined into a single database from mixed sources (termed the atrazine rural well database) to (1) characterize differences between exposure estimates from standard EPA modeling approaches for specific characterization, (2) evaluate monitoring data toward direct use in US drinking water risk assessments to compliment or supersede standard modeling approaches to define risk, and (3) evaluate monitoring trends a function of time relative to label changes implemented as part of the registration review process. Of the 75,665 drinking water samples collected from groundwater, atrazine was only detected in 3185, a 4% detection rate.


Subject(s)
Atrazine , Drinking Water , Groundwater , Pesticides , Atrazine/analysis , Environmental Monitoring , Pesticides/analysis , United States
2.
J Toxicol Environ Health B Crit Rev ; 24(6): 223-306, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34219616

ABSTRACT

Atrazine is a triazine herbicide used predominantly on corn, sorghum, and sugarcane in the US. Its use potentially overlaps with the ranges of listed (threatened and endangered) species. In response to registration review in the context of the Endangered Species Act, we evaluated potential direct and indirect impacts of atrazine on listed species and designated critical habitats. Atrazine has been widely studied, extensive environmental monitoring and toxicity data sets are available, and the spatial and temporal uses on major crops are well characterized. Ranges of listed species are less well-defined, resulting in overly conservative designations of "May Effect". Preferences for habitat and food sources serve to limit exposure among many listed animal species and animals are relatively insensitive. Atrazine does not bioaccumulate, further diminishing exposures among consumers and predators. Because of incomplete exposure pathways, many species can be eliminated from consideration for direct effects. It is toxic to plants, but even sensitive plants tolerate episodic exposures, such as those occurring in flowing waters. Empirical data from long-term monitoring programs and realistic field data on off-target deposition of drift indicate that many other listed species can be removed from consideration because exposures are below conservative toxicity thresholds for direct and indirect effects. Combined with recent mitigation actions by the registrant, this review serves to refine and focus forthcoming listed species assessment efforts for atrazine.Abbreviations: a.i. = Active ingredient (of a pesticide product). AEMP = Atrazine Ecological Monitoring Program. AIMS = Avian Incident Monitoring SystemArach. = Arachnid (spiders and mites). AUC = Area Under the Curve. BE = Biological Evaluation (of potential effects on listed species). BO = Biological Opinion (conclusion of the consultation between USEPA and the Services with respect to potential effects in listed species). CASM = Comprehensive Aquatic System Model. CDL = Crop Data LayerCN = field Curve Number. CRP = Conservation Reserve Program (lands). CTA = Conditioned Taste Avoidance. DAC = Diaminochlorotriazine (a metabolite of atrazine, also known by the acronym DACT). DER = Data Evaluation Record. EC25 = Concentration causing a specified effect in 25% of the tested organisms. EC50 = Concentration causing a specified effect in 50% of the tested organisms. EC50RGR = Concentration causing a 50% reduction in relative growth rate. ECOS = Environmental Conservation Online System. EDD = Estimated Daily Dose. EEC = Expected Environmental Concentration. EFED = Environmental Fate and Effects Division (of the USEPA). EFSA = European Food Safety Agency. EIIS = Ecological Incident Information System. ERA = Environmental Risk Assessment. ESA = Endangered Species Act. ESU = Evolutionarily Significant UnitsFAR = Field Application RateFIFRA = Federal Insecticide, Fungicide, and Rodenticide Act. FOIA = Freedom of Information Act (request). GSD = Genus Sensitivity Distribution. HC5 = Hazardous Concentration for ≤ 5% of species. HUC = Hydrologic Unit Code. IBM = Individual-Based Model. IDS = Incident Data System. KOC = Partition coefficient between water and organic matter in soil or sediment. KOW = Octanol-Water partition coefficient. LC50 = Concentration lethal to 50% of the tested organisms. LC-MS-MS = Liquid Chromatograph with Tandem Mass Spectrometry. LD50 = Dose lethal to 50% of the tested organisms. LAA = Likely to Adversely Affect. LOAEC = Lowest-Observed-Adverse-Effect Concentration. LOC = Level of Concern. MA = May Affect. MATC = Maximum Acceptable Toxicant Concentration. NAS = National Academy of Sciences. NCWQR = National Center of Water Quality Research. NE = No Effect. NLAA = Not Likely to Adversely Affect. NMFS = National Marine Fisheries Service. NOAA = National Oceanic and Atmospheric Administration. NOAEC = No-Observed-Adverse-Effect Concentration. NOAEL = No-Observed-Adverse-Effect Dose-Level. OECD = Organization of Economic Cooperation and Development. PNSP = Pesticide National Synthesis Project. PQ = Plastoquinone. PRZM = Pesticide Root Zone Model. PWC = Pesticide in Water Calculator. QWoE = Quantitative Weight of Evidence. RGR = Relative growth rate (of plants). RQ = Risk Quotient. RUD = Residue Unit Doses. SAP = Science Advisory Panel (of the USEPA). SGR = Specific Growth Rate. SI = Supplemental Information. SSD = Species Sensitivity Distribution. SURLAG = Surface Runoff Lag Coefficient. SWAT = Soil & Water Assessment Tool. SWCC = Surface Water Concentration Calculator. UDL = Use Data Layer (for pesticides). USDA = United States Department of Agriculture. USEPA = United States Environmental Protection Agency. USFWS = United States Fish and Wildlife Service. USGS = United States Geological Survey. WARP = Watershed Regressions for Pesticides.


Subject(s)
Atrazine/toxicity , Environmental Monitoring/methods , Herbicides/toxicity , Animals , Atrazine/analysis , Herbicides/analysis , Risk Assessment/methods , Species Specificity , United States
3.
Arch Environ Contam Toxicol ; 81(1): 123-132, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33891147

ABSTRACT

This paper presents a semiquantitative method to help ecotoxicologists evaluate the consistency of data within the available peer-reviewed literature. In this case study, we queried whether there is consistent evidence of direct toxicity in Anurans exposed to atrazine at concentrations ≤ 100 µg/L under laboratory conditions. Atrazine was selected because of the relatively large repository of Anuran toxicity data. To accomplish this, we interrogated available data found in recent quantitative weight-of-evidence risk assessments for atrazine with a series of yes or no questions developed a priori. The questions examined consistency of reported effects within and between studies, within and between species, and across a wide range of endpoints categories (e.g., survivorship, growth and development, reproduction). The analysis found no compelling evidence of a consistent direct effect in Anurans around growth and development, reproduction, or survivorship at concentrations of up to at least 100 µg/L atrazine in laboratory studies. Further work is needed to refine the approach, including accounting for the magnitude of the reported effects. However, we recommend that ecotoxicologists employ some method of formal consistency of effects assessment method routinely before performing toxicity tests, in the contextualizing of new data, and in reviews of contaminants.


Subject(s)
Atrazine , Herbicides , Water Pollutants, Chemical , Animals , Anura , Atrazine/toxicity , Herbicides/toxicity , Laboratories , Water Pollutants, Chemical/toxicity
4.
Ecotoxicol Environ Saf ; 132: 250-9, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27340884

ABSTRACT

The acute toxicity of herbicides to algae is commonly assessed under conditions (e.g., light intensity, water temperature, concentration of nutrients, pH) prescribed by standard test protocols. However, the observed toxicity may vary with changes in one or more of these parameters. This study examined variation in toxicity of the herbicide atrazine to a representative green algal species Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) with changes in light intensity, water temperature, concentrations of nutrients or combinations of these three parameters. Conditions were chosen that could be representative of the intensive corn growing Midwestern region of the United States of America where atrazine is used extensively. Varying light intensity (4-58µmol/m(2)s) resulted in no observable trend in 96-h EC50 values for growth rate. EC50 values for PSII yield generally increased with decreasing light intensity but not significantly in all cases. The 96-h EC50 values for growth rate decreased with decreases in temperature (20-5°C) from standard conditions (25°C), but EC50 values for PSII yield at lower temperatures were not significantly different from standard conditions. Finally, there was no clear trend in 96-h EC50 values for both endpoints with increases in nitrogen (4.1-20mg/L) and phosphorus (0.24-1.2mg/L). The 96-h EC50 values for both endpoints under combinations of conditions mimicking aquatic systems in the Midwestern U.S. were not significantly different from EC50 values generated under standard test conditions. This combination of decreased light intensity and temperature and increased nutrients relative to standard conditions does not appear to significantly affect the observed toxicity of atrazine to R. subcapitata. For atrazine specifically, and for perhaps other herbicides, this means current laboratory protocols are useful for extrapolating to effects on algae under realistic environmental conditions.


Subject(s)
Atrazine/toxicity , Chlorophyta/drug effects , Herbicides/toxicity , Light , Temperature , Water Pollutants, Chemical/toxicity , Chlorophyta/radiation effects , Risk Assessment
5.
Ecotoxicol Environ Saf ; 118: 204-216, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25957082

ABSTRACT

Lotic systems in agriculturally intensive watersheds can experience short-term pulsed exposures of pesticides as a result of runoff associated with rainfall events following field applications. Of special interest are herbicides that could potentially impair communities of primary producers, such as those associated with periphyton. Therefore, this study examined agroecosystem-derived lotic periphyton to assess (1) variation in community sensitivity to, and ability to recover from, acute (48h) exposure to the photosystem II (PSII)-inhibiting herbicide atrazine across sites and time, and (2) attempt to determine the variables (e.g., community structure, hydrology, water quality measures) that were predictive for observed differences in sensitivity and recovery. Periphyton were sampled from six streams in the Midwestern U.S. on four different dates in 2012 (April to August). Field-derived periphyton were exposed in the laboratory to concentrations of atrazine ranging from 10 to 320µg/L for 48h, followed by untreated media for evaluation of recovery for 48h. Effective quantum yield of PSII was measured after 24h and 48h exposure and 24h and 48h after replacement of media. Inhibition of PSII EC50 values ranged from 53 to >320µg/L. The majority of periphyton samples (16 out of 22) exposed to atrazine up to 320µg/L recovered completely by 48h after replacement of media. Percent inhibition of effective quantum yield of PSII in periphyton (6 of 22 samples) exposed to 320µg/L atrazine that were significantly lower than controls after 48h ranged from 2% to 24%. No distinct spatial or temporal trends in sensitivity and recovery potential were observed over the course of the study. Conditional inference forest analysis and variation partitioning were used to investigate potential associations between periphyton sensitivity to and ability to recover from exposure to atrazine. Although certain environmental variables (i.e., proximity of high flow/velocity events and dissolved solutes) were significantly associated with sensitivity to atrazine, recovery was not significantly associated with any variables, which is predicted by the rapid reversible binding at PSII. Consistent and rapid recovery of effective quantum yield of PSII across sites and sampling dates indicates that acute exposure to atrazine is unlikely to adversely affect function of these communities in their current state in intensive agroecosystems.


Subject(s)
Atrazine/toxicity , Herbicides/toxicity , Microalgae/drug effects , Water Pollutants, Chemical/toxicity , Biota , Midwestern United States , Photosystem II Protein Complex/metabolism , Rivers/chemistry , Seasons , Spatial Analysis
6.
Article in English | MEDLINE | ID: mdl-24844889

ABSTRACT

The objectives of this pilot study were to: (1) characterize periphyton and benthic communities using standard collection methods in six Midwest watersheds with varying historical levels of atrazine (low range, medium range and upper range); (2) qualitatively assess presence of aquatic vascular plants at each site; (3) assess and compare physical habitat at each study site in order to evaluate how physical habitat structure may influence the biological communities and (4) analyze the periphyton and benthic macroinvertebrate community data (i.e., series of metrics) among sites to evaluate possible differences or similarities among sites with different historical atrazine exposures. Five of the eight physical habitat metrics (including total physical habitat score) were different among the six study sites. There appeared to be no substantial difference in the structure of periphtyon communities at the six Midwest sites based on 9 of 12 metrics. For the three metrics that showed differences among sites-percentage of sensitive diatoms, percent Achnanches minutissima and percent motile diatoms - there was no consistent pattern with previous degrees of atrazine exposure and the scoring of these metrics. There were also no statistical differences in aquatic macrophyte spatial coverage among the six study areas. Thus, based on the spatially and temporally limited periphyton and aquatic macrophyte data, varying historical atrazine exposure was not associated with impact on resident plant communities (the target receptor group for atrazine). All 10 benthic community metrics showed significant differences among the six Midwest sites. Although no consistent pattern existed with varying historic levels of atrazine, benthic communities at one site with lower historical levels of atrazine were of higher quality than the other five sites. However, this one site also had a higher quality habitat compared to the other sites which was most likely the reason for this benthic condition.


Subject(s)
Atrazine/analysis , Ecosystem , Herbicides/analysis , Animals , Diatoms , Environmental Monitoring , Invertebrates , Midwestern United States , Pilot Projects , Plants , Rivers/chemistry
7.
Ecotoxicology ; 22(9): 1367-83, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24043588

ABSTRACT

Periphyton communities are an integral component of freshwater ecosystems and the desire to include data from toxicity testing with these organisms for ecological risk assessment is growing. This study developed sampling, storage, and exposure methods for the consistent and effective characterization of acute response and recovery of field-derived periphyton to photosystem II (PSII) inhibiting herbicides, particularly atrazine. Pulse amplitude modulated fluorometry was used to assess PSII quantum yield. For the method development phase, periphyton samples were collected from lotic and lentic systems in the Guelph, Ontario, Canada area during the summer of 2011. Following method development, native periphyton communities from three agricultural streams from the midwestern U.S. were sampled and exposed to atrazine (10-320 µg/L) and assessed for inhibition of PSII quantum yield (from 2 up to 24 h) and subsequent recovery upon cessation of exposure (up to 48 h post-exposure). Sensitivity to atrazine (EC10 and EC50 values) varied slightly (typically less than twofold difference) by site, date of sampling, and exposure interval. Only the highest initial test concentrations (160 or 320 µg/L) demonstrated greater than ~5% inhibition at 48 h post-exposure; however all other test concentrations recovered to within 5% of control levels, typically within 24 h. The rapid physiological recovery of periphyton communities upon atrazine removal supports the conclusion that acute exposure will not likely result in significant or sustained impacts on either structure or function of periphyton in lotic ecosystems. For ecological risk assessment, this suggests the current approach of relying on direct effects data for the most sensitive single species alone may result in overly conservative estimates of potential effects, especially for complex communities of primary producers.


Subject(s)
Atrazine/toxicity , Herbicides/toxicity , Photosystem II Protein Complex/antagonists & inhibitors , Phytoplankton/drug effects , Water Pollutants, Chemical/toxicity , Midwestern United States , Rivers
8.
Integr Environ Assess Manag ; 19(3): 817-829, 2023 May.
Article in English | MEDLINE | ID: mdl-36385493

ABSTRACT

The US Environmental Protection Agency (USEPA or the Agency) is responsible for administering the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). The Agency is also required to assess the potential risks of pesticides undergoing registration or re-registration to threatened and endangered (i.e., listed) species to ensure compliance with the Endangered Species Act. To assess potential risks to listed species, a screening-level risk assessment in the form of a biological evaluation (BE) is undertaken by the Agency for each pesticide. Given the large number of registration actions handled by the USEPA annually, efficient tools for conducting BEs are desirable. However, the "Revised Method" that is the basis for the USEPA's BE process has been ineffective at filtering out listed species and critical habitats that are at de minimis risk to pesticides. In the USEPA's BEs, the Magnitude of Effect Tool (MAGtool) has been used to determine potential risks to listed species that potentially co-occur with pesticide footprints. The MAGtool is a highly prescriptive, high-throughput compilation of existing FIFRA screening-level models with a geospatial interface. The tool has been a significant contributor to risk inflation and ultimately process inefficiency. The ineffectiveness of the tool stems from compounding conservatism, unrealistic and unreasonable assumptions regarding usage, limited application of species-specific data, lack of consideration of multiple lines of evidence, and inability to integrate higher-tier data. Here, we briefly describe the MAGtool and the critical deficiencies that impair its effectiveness, thus undermining its intention. Case studies are presented to highlight the deficiencies and solutions are recommended for improving listed species assessments in the future. Integr Environ Assess Manag 2023;19:817-829. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Insecticides , Pesticides , Animals , United States , Endangered Species , Risk Assessment/methods
9.
Integr Environ Assess Manag ; 19(6): 1581-1599, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37070476

ABSTRACT

Synthetic pesticides are important agricultural tools that increase crop yield and help feed the world's growing population. These products are also highly regulated to balance benefits and potential environmental and human risks. Public perception of pesticide use, safety, and regulation is an important topic necessitating discussion across a variety of stakeholders from lay consumers to regulatory agencies since attitudes toward this subject could differ markedly. Individuals and organizations can perceive the same message(s) about pesticides differently due to prior differences in technical knowledge, perceptions, attitudes, and individual or group circumstances. Social media platforms, like Twitter, include both individuals and organizations and function as a townhall where each group promotes their topics of interest, shares their perspectives, and engages in both well-informed and misinformed discussions. We analyzed public Twitter posts about pesticides by user group, time, and location to understand their communication behaviors, including their sentiments and discussion topics, using machine learning-based text analysis methods. We extracted tweets related to pesticides between 2013 and 2021 based on relevant keywords developed through a "snowball" sampling process. Each tweet was grouped into individual versus organizational groups, then further categorized into media, government, industry, academia, and three types of nongovernmental organizations. We compared topic distributions within and between those groups using topic modeling and then applied sentiment analysis to understand the public's attitudes toward pesticide safety and regulation. Individual accounts expressed concerns about health and environmental risks, while industry and government accounts focused on agricultural usage and regulations. Public perceptions are heavily skewed toward negative sentiments, although this varies geographically. Our findings can help managers and decision-makers understand public sentiments, priorities, and perceptions and provide insights into public discourse on pesticides. Integr Environ Assess Manag 2023;19:1581-1599. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Pesticides , Social Media , Humans , Pesticides/toxicity , Communication
10.
Ecotoxicol Environ Saf ; 79: 55-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22204826

ABSTRACT

Light intensity can have a profound influence on the degree of phytotoxicity experienced by plants exposed to photosystem II (PSII) inhibiting herbicides. This relationship was evaluated in the submerged aquatic macrophyte Elodea canadensis exposed to three different concentrations of atrazine (510, 1000 and 2000 µg a.i./L) plus an untreated control at three different light intensities (0, 500 and 6000 lx) under static-renewal conditions for 14 days. Under 500 lx light intensity, control plants demonstrated a rapid increase in shoot length but minimal increase in dry shoot weight, suggesting limited photosynthesis. Based on shoot-length and biomass, growth was not affected by any atrazine exposure relative to controls under dark conditions (0 lx). Under low-light conditions at 500 lx, exposures to 510, 1000 and 2000 µg a.i./L atrazine significantly decreased net shoot lengths by 34%, 38% and 35%, respectively, relative to corresponding (500 lx) controls. However, atrazine exposure under this light condition did not significantly decrease biomass (dry shoot weight). Compared to 6000 lx, only approximately 8% of photosynthetically active radiation (PAR) was measured under 500 lx intensity, indicating that minimal PAR was available for photosynthesis. Under optimal light conditions (6000 lx), net shoot lengths significantly decreased in the treated atrazine groups by 48%, 51% and 68%, and net dry shoot weights (biomass) were significantly decreased by 79%, 81% and 91%, respectively, relative to corresponding (6000 lx) controls. These data show that under low light conditions, atrazine-induced effects on dry shoot weight (biomass) are dependent on available PAR and active photosynthesis.


Subject(s)
Atrazine/toxicity , Herbicides/toxicity , Hydrocharitaceae/drug effects , Light , Biomass , Fresh Water/chemistry , Hydrocharitaceae/physiology , Photochemical Processes , Photosynthesis/drug effects , Water Pollutants, Chemical/toxicity
11.
Pest Manag Sci ; 78(7): 3193-3206, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35488378

ABSTRACT

BACKGROUND: This work reports a combined, field-scale spray drift deposition and plant bioassay study for a pre-mixture of the herbicides mesotrione and s-metolachlor. Wind direction data and field dimensions were used to evaluate the potential for spray drift to bypass downwind sampling devices. Variability in resulting spray drift across downwind distances was assessed alongside wind speed measured at on-site weather stations. Measured wind angles were used to geometrically adjust traveled drift particle distances and enabling isolation of wind direction impact from wind speed. Further, the use of single and multiple in-field monitoring locations was compared to quantify the benefit of higher-resolution meteorological sampling. RESULTS: Generally, increased wind speed resulted in significantly greater herbicide deposition at distances proximal to the edge of the spray zone. According to the drift deposition curves that included wind speed data from single and multiple onsite weather stations, trials with relatively higher wind speeds were associated with greater spray drift deposition at relatively close sampling distances downwind from the application area. Only marginal improvement of linear mixed-effects model fit was observed when including data from three weather stations, compared to the fit from a single weather station or absence of weather data in the model. Using tomato and lettuce plant bioassay species, the overall no-effect distance was 3.0 m (10 ft). CONCLUSION: Results from this study are informative to refine pesticide risk assessment for non-target plants and indicate that a single weather station is sufficient to capture potential influential effects from wind speed and direction on spray drift. © 2022 Society of Chemical Industry.


Subject(s)
Herbicides , Pesticides , Agriculture/methods , Cyclohexanones , Environmental Monitoring/methods , Herbicides/pharmacology , Pesticides/analysis , Plants , Wind , Zea mays
12.
Sci Total Environ ; 755(Pt 2): 142589, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33065508

ABSTRACT

Fathead minnows (Pimephales promelas) were continuously exposed to the herbicide atrazine (0.15, 0.25, 0.46, 0.99, and 2.0 mg a.i./L, plus dilution water and solvent controls) for a complete life cycle (274 days). Concentrations of atrazine up to 2.0 mg a.i./L did not significantly reduce hatching success, larval survival at 30 or 60 days post-hatch, or reproduction (eggs/spawn, total eggs, spawns/female, or eggs/female) in the F0 generation. However, at 60 days of exposure, total length and total survival to study completion were significantly reduced in ≥0.46 mg a.i./L and ≥ 0.99 mg a.i./L treatments, respectively. In the F1 generation, hatchability of embryos at ≥0.25 mg a.i./L (range 74-82%) was significantly less than that of pooled control organisms (86%). Following 30 days' post-hatch exposure, F1 survival was not significantly different from pooled control for any treatment. Finally, tissues representing major life stages had bioconcentration factors ranging from 3.7× (F1 embryos, <24 h) to 8.5× (F0 adults), indicating little to no evidence of bioconcentration. We developed a series of questions to assess the consistency of observed responses in order to place the data in context with the wider available and relevant literature (e.g., Observed between studies? Observed between species? Observed at lower levels of biological organization?). The analysis for consistency supports the conclusion that atrazine does not pose a significant chronic risk to freshwater fish in terms of growth, reproduction, or survivorship at concentrations of up to at least 100 µg/L.


Subject(s)
Atrazine , Cyprinidae , Water Pollutants, Chemical , Animals , Atrazine/toxicity , Female , Life Cycle Stages , Reproduction , Water Pollutants, Chemical/toxicity
13.
Pest Manag Sci ; 77(9): 4192-4199, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33942978

ABSTRACT

Tracer dyes are often used as surrogates to characterize pesticide spray drift and it is assumed that they accurately reflect analytical measurement of active ingredients; however, the validity of this assumption remains inconclusive. Consequently, the influence of measurement technique on the magnitude of deposition of spray drift was investigated using spray drift samples evaluated by traditional analytical techniques (HPLC-MS/MS) and fluorimetry (1,3,6,8-pyrene-tetra sulfonic acid tetrasodium salt dye tracer). The experiment was conducted in a low-speed wind tunnel under controlled meteorological conditions. The herbicide mesotrione was sprayed through three spray air induction nozzles (anvil deflector flat fan TTI11004; flat fan AI11004; flat fan AIXR11003). Spray drift deposition samples were collected using stainless steel discs pairs placed side by side in the center of the wind tunnel at distances of 5, 10, 20, 30, and 40 ft (1.5, 3.1, 6.1, 9.1, and 12.2 m) from the spray nozzle. The analytical technique determined pesticide concentration on one disc per pair, and the other was evaluated by fluorimetry. The experimental results, analyzed using the linear split-split plot model, revealed that median deposition concentrations were 15% higher using the tracer dye fluorescence method relative to the analytical method, potentially due in part to procedural recovery inefficiencies of the analytical method (the mean overall procedural recovery result and RSD was 87% ± 6.4% (n = 12). This relationship was consistent and held true for the three nozzle types at all distances within the wind tunnel. © 2021 Society of Chemical Industry.


Subject(s)
Agriculture , Pesticides , Fluorometry , Particle Size , Pesticides/analysis , Tandem Mass Spectrometry
14.
Integr Environ Assess Manag ; 17(2): 321-330, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32949192

ABSTRACT

Risk curves describe the relationship between cumulative probability and magnitude of effect and thus express far more information than risk quotients. However, their adoption has remained limited in ecological risk assessment. Therefore, we developed the Ecotoxicity Risk Calculator (ERC) to simplify the derivation of risk curves, which can be used to inform risk management decisions. Case studies are presented with crop protection products, highlighting the utility of the ERC at incorporating various data sources, including surface water modeling estimates, monitoring observations, and species sensitivity distributions. Integr Environ Assess Manag 2021;17:321-330. © 2020 Syngenta Crop Protection, LLC. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Crop Protection , Ecotoxicology , Environmental Monitoring , Probability , Risk Assessment , Risk Management
15.
Plant Cell Environ ; 33(7): 1205-19, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20199616

ABSTRACT

Plants accumulate flavonoids in response to a myriad of environmental challenges, especially when exposed to ultraviolet (UV) radiation or situations causing oxidative stress. However, the origin and nature of the signal triggering their accumulation remain obscure. In this study, a group of flavonoids belonging to the flavone class was identified in Lemna gibba (duckweed). These flavones accumulated upon exposure to UV radiation, low temperature, copper and the photosynthetic electron transport (PET) inhibitors 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB) and 1,2-dihydroxyanthraquinone (DHATQ). All of these stressors were also shown to promote PET chain (PETC) reduction; however, in the co-presence of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) or a light regime that oxidized the PETC, flavonoid accumulation ceased. Chloroplast-derived reactive oxygen species (ROS) were not associated with all of the stress conditions that promoted both PETC reduction and flavonoid synthesis, indicating that ROS were not a strict requisite for flavonoid accumulation. Transcripts for the flavonoid biosynthetic genes, chalcone synthase (CHS) and chalcone isomerase, were similarly responsive to the PETC redox state, as were a panel of transcripts revealed by differential display PCR. Collectively, these results provide evidence that PETC redox status is one of the factors affecting flavonoid biosynthesis.


Subject(s)
Araceae/metabolism , Flavonoids/biosynthesis , Photosynthesis , Araceae/genetics , Gene Expression Regulation, Plant , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Stress, Physiological , Ultraviolet Rays
16.
Article in English | MEDLINE | ID: mdl-32418111

ABSTRACT

Most Americans are at least three generations removed from the farm, thereby at least three generations removed from the reality of where their food comes from. Not surprisingly, there are many misconceptions about modern food production, including the potential collateral environmental damage attributed to agriculture, particularly the application of pesticides. However, the implication of conventional agriculture in the broader narrative of wildlife species status outcomes (SSOs) lacks context and relativity. Since the dawn of civilization, humans have had a profound impact on their environment. Originating as hunter-gatherer societies, our ancient ancestors initially exploited anything that could be consumed or brought to bear. With the advent of the "first proto-farmers," humans began manipulating their environments to maximize available resources. Urban centers propagated and flourished proximal to agricultural origins, where modern societies have been built primarily on an abundance of food. As societies "developed," and continue to develop, an inevitable economic transition occurs from agriculture to industry/service predominance, culminating in a corresponding shift in land use. Developed countries have typically experienced maximal expansion of the agricultural frontier, where farmland is now steadily eroding by a proverbial flood of urban development. In contrast, in developing countries, this shift in economic development has not yet fully manifested and the agricultural footprint continues to expand at the expense of native habitats. Thus, the relative influence of "agriculture" on SSOs, in terms of land use, is primarily dependent on economic developmental status, which can be, at least in part, ameliorated via technology by increasing yield from existing land. Moreover, in addition to the land use challenge, there are multiple other factors affecting wildlife SSOs, including a figurative plague of invasive species, a literal plague of disease, a barrage of buildings, bumpers, grilles, and windshields to collide with, light pollution to confuse cues with, poachers to contend with, and even more complicated factors such as climate change. Being an easy target does not mean pesticides are the right target, and this fixation can potentially detract from public awareness regarding the primary drivers affecting SSOs as well as the opportunity to proactively address them. So, relatively speaking, how do these other factors compare to "pesticides" in terms of driving SSOs? Moreover, why is the popular media so fixated on the pesticide narrative? Based on the available evidence, this manuscript attempts to address these questions from a holistic and relative perspective within the context of land use change, economic development, population growth, and associated implications of global connectivity and commerce.

17.
Environ Toxicol Chem ; 39(11): 2298-2303, 2020 11.
Article in English | MEDLINE | ID: mdl-32776598

ABSTRACT

The comprehensive aquatic systems model (CASM), an aquatic food web-ecosystem model, was developed originally to explore relationships between food web structure and ecosystem function, and was then subsequently adapted to assess potential ecological risks posed by chemical contaminants. The present short communication presents the history of the CASM, describes the model structure, lists the outputs of the model, and introduces user-friendly versions of CASM applications that are being made publicly available. Environ Toxicol Chem 2020;39:2298-2303. © 2020 SETAC.


Subject(s)
Ecosystem , Models, Theoretical , Animals , Aquatic Organisms/physiology , Biomass , Energy Metabolism , Food Chain , Software
18.
Integr Environ Assess Manag ; 16(1): 53-65, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31433110

ABSTRACT

A species sensitivity distribution (SSD) is a cumulative distribution function of toxicity endpoints for a receptor group. A key assumption when deriving an SSD is that the toxicity data points are independent and identically distributed (iid). This assumption is tenuous, however, because closely related species are more likely to have similar sensitivities than are distantly related species. When the response of 1 species can be partially predicted by the response of another species, there is a dependency or autocorrelation in the data set. To date, phylogenetic relationships and the resulting dependencies in input data sets have been ignored in deriving SSDs. In this paper, we explore the importance of the phylogenetic signal in deriving SSDs using a case studies approach. The case studies involved toxicity data sets for aquatic autotrophs exposed to atrazine and aquatic and avian species exposed to chlorpyrifos. Full and partial data sets were included to explore the influences of differing phylogenetic signal strength and sample size. The phylogenetic signal was significant for some toxicity data sets (i.e., most chlorpyrifos data sets) but not for others (i.e., the atrazine data sets, the chlorpyrifos data sets for all insects, crustaceans, and birds). When a significant phylogenetic signal did occur, effective sample size was reduced. The reduction was large when the signal was strong. In spite of the reduced effective sample sizes, significant phylogenetic signals had little impact on fitted SSDs, even in the tails (e.g., hazardous concentration for 5th percentile species [HC5]). The lack of a phylogenetic signal impact occurred even when we artificially reduced original sample size and increased strength of the phylogenetic signal. We conclude that it is good statistical practice to account for the phylogenetic signal when deriving SSDs because most toxicity data sets do not meet the independence assumption. That said, SSDs and HC5s are robust to deviations from the independence assumption. Integr Environ Assess Manag 2019;00:1-13. © 2019 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Chlorpyrifos , Phylogeny , Species Specificity , Water Pollutants, Chemical , Animals , Chlorpyrifos/toxicity , Ecotoxicology , Risk Assessment , Sensitivity and Specificity , Water Pollutants, Chemical/toxicity
19.
Rev Environ Contam Toxicol ; 198: 49-109, 2009.
Article in English | MEDLINE | ID: mdl-19253039

ABSTRACT

This review emphasizes the predictive ability, sensitivity and specificity of aquatic plant biomarkers as biomonitoring agents of exposure and effect. Biomarkers of exposure are those that provide functional measures of exposure that are characterized at a sub-organism level. Biomarkers of effect require causal linkages between the biomarker and effects, measured at higher levels of biological organization. With the exception of pathway specific metabolites, the biomarkers assessed in this review show variable sensitivity and predictive ability that is often confounded by variations in growth conditions, rendering them unsuitable as stand alone indicators of environmental stress. The use of gene expression for detecting pollution has been, and remains immature; this immaturity derives from inadequate knowledge on predictive ability, sensitivity and specificity. Moreover, the ability to the detect mode of action of unknown toxicants using gene expression is not as clear-cut as initially hypothesized. The principal patterns in gene expression is not as clear-cut as initially hypothesized. The principal patterns in gene expression are generally derived from stress induced genes, rather than on ones that respond to substances with known modes of action (Baerson et al. 2005). Future developments in multivariate statistics and chemometric methods that enhance pattern analyses in ways that could produce a "fingerprint", may improve methods for discovering modes of action of unknown toxicants. Pathway specific metabolites are unambiguous, sensitive, correlate well to growth effects, and are relatively unaffected by growth conditions. These traits make them excellent biomarkers under both field and laboratory conditions. Changes in metabolites precede visible growth effects; therefore, measuring changes in metabolite concentrations (Harring et al. 1998; Shaner et al. 2005). The metabolic phase I enzymes (primarily associated with P-450 activity) are non-specific biomarkers, and few studies relate them to growth parameters. P-450 activity both increases and decreases in response to chemical stress, often confounding interpretation of experimental results. Alternatively, phase II metabolic enzymes (e.g., glutathione S-transferases; GST's) appear to be sensitive biomarkers of exposure, and potentially effect. Some GST's are affected by growth factors, but others may only be induced by xenobiotics. Measuring xenobiotic-induced GST's, or their gene expression patterns, are good candidates for future biomarkers of the cumulative load of chemical stress, both in the laboratory and under field conditions. Phytochelatins respond to some but not all metal ions, and may therefore be used as biomarkers of exposure to identify the presence and bioavailability of ions to which they respond. However, more data on their specificity to, and interactions with growth factors, in more species are needed. The flavenoids are only represented by one heavy metal exposure study; therefore their use as biomarkers is currently difficult to judge. Stress proteins tend to be specific for toxicants that affect protein function. Growth factors are known to affect the level of stress proteins; hence, the use of stress proteins as biomarkers will be confined to experiments performed under controlled growth conditions, where they can be excellent indicators of proteotoxicity. Reactive oxygen species (ROS), ROS scavenging enzymes, changes in pigment content, photosynthesis and chlorophyll fluorescence are all affected by growth factors, particularly light and nutrient availability. Therefore, these biomarkers are best suited to investigate the mode of action of toxicants under controlled growth conditions. These biomarkers are sensitive to xenobiotic stressors that affect various processes in the photosynthetic apparatus, and can be used to diagnose which photosynthetic process or processes are primarily affected. Chlorophyll fluorescence is a non-destructive measure, and is thereby well suited for repeated measures of effect and recovery (Abbaspoor and Streibig 2005; Abbaspoor et al. 2006; Cedergreen et al. 2004). Bi-phasic responses (over time and with dose) are probably major sources of variation in sensitivity for many biomarkers. Metabolic enzymes, stress proteins, ROS and their corresponding scavenging enzymes increase in a time-frame and at doses in which plant cell damage is still repairable. However, when toxicity progresses to the point of cell damage, the concentration/activity of the biomarker either stabilizes or decreases. Examples of this response pattern are given in Lei et al. (2006); Pflugmacher et al. (2000b); Teisseire et al. (1998); and Teisseire and Guy (2000). Gene expression is also a time-dependent phenomenon varying several fold within a few hour. Therefore, bi-phasic response patterns make timing and dose-range, within which the biomarkers can be used as measures of both exposure and effect, extremely important. As a result, most biomarkers are best suited for situations in which the time and dose dependence of the biomarker, in the investigated species, are established. Notwithstanding the previously mentioned limitations, all assessed biomarkers provide valuable information on the physiological effects of specific stressors, and are valuable tools in the search for understanding xenobiotic modes of action. However, the future use of aquatic plant biomarkers will probably be confined to laboratory studies designed to assess toxicant modes of action, until further knowledge is gained regarding the time, dose and growth-factor dependence of biomarkers, in different species. No single biomarker is viable in gaining a comprehensive understanding of xenobiotic stress. Only through the concomitant measurement of a suite of appropriate biomarkers will our diagnostic capacity be enhanced and the field of ecotoxicology, as it relates to aquatic plants, advanced.


Subject(s)
Biomarkers/analysis , Environmental Pollutants/toxicity , Oxidative Stress/drug effects , Plants/drug effects , Xenobiotics/toxicity , Antioxidants/metabolism , Gene Expression/drug effects , Oxidative Stress/genetics , Plant Development , Plants/genetics , Plants/metabolism
20.
J Toxicol Environ Health A ; 72(15-16): 937-48, 2009.
Article in English | MEDLINE | ID: mdl-19672762

ABSTRACT

This study evaluates the cumulative multifactorial physical and chemical impacts resulting from coca production on amphibian populations in comparison with the potential impacts produced by the herbicide glyphosate (Glyphos), which, mixed with the surfactant Cosmo-Flux, is used in the spray control program for illicit crops in Colombia. Using similar worst-case assumptions for exposure, several other pesticides used for coca production, including mancozeb, lambda cyhalothrin, endosulfan, diazinon, malathion, and chlorpyrifos, were up to 10- to 100-fold more toxic to frogs than the Glyphos-Cosmo-Flux mixture. Comparing hazard quotients based on application rates, several of these compounds demonstrated hazards 3-383 times that of formulated glyphosate. Secondary effects, particularly of insecticides, are also a concern, as these agents selectively target the primary food source of amphibians, which may indirectly impact growth and development. Although the potential chemical impacts by other pesticides are considerable, physical activities associated with coca production, particularly deforestation of primary forests for new coca plots, portend the greatest hazard to amphibian populations. The entire production cycle of cocaine has been linked to ecosystem degradation. The clearing of pristine forests for coca propagation in Colombia is well documented, and some of these regions coincide with those that contain exceptional amphibian biodiversity. This is particularly problematic as coca production encroaches more deeply into more remote areas of tropical rain forest. Transportation of disease, including the chitrid fungus, to these remote regions via human intrusion may also adversely affect amphibian populations. Therefore, the cumulative impacts of coca production, through habitat destruction, application of agrochemicals, and potential transmission of disease, are judged to pose greater risks to amphibian populations in coca-growing regions than the glyphosate spray control program.


Subject(s)
Coca/growth & development , Defoliants, Chemical/toxicity , Drug and Narcotic Control/methods , Glycine/analogs & derivatives , Ranidae , Water Pollutants, Chemical/toxicity , Adjuvants, Pharmaceutic/toxicity , Agriculture , Aircraft , Animals , Colombia , Dose-Response Relationship, Drug , Ecosystem , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Monitoring , Glycine/toxicity , Risk Assessment , Surface-Active Agents/toxicity , Toxicity Tests , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL