Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 855
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38289969

ABSTRACT

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Animals , Mice , Amyotrophic Lateral Sclerosis/drug therapy , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Cysteine/genetics , Mutation , Superoxide Dismutase/genetics , Superoxide Dismutase/chemistry , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics
2.
PLoS Biol ; 21(5): e3002091, 2023 05.
Article in English | MEDLINE | ID: mdl-37192172

ABSTRACT

The streptothricin natural product mixture (also known as nourseothricin) was discovered in the early 1940s, generating intense initial interest because of excellent gram-negative activity. Here, we establish the activity spectrum of nourseothricin and its main components, streptothricin F (S-F, 1 lysine) and streptothricin D (S-D, 3 lysines), purified to homogeneity, against highly drug-resistant, carbapenem-resistant Enterobacterales (CRE) and Acinetobacter baumannii. For CRE, the MIC50 and MIC90 for S-F and S-D were 2 and 4 µM, and 0.25 and 0.5 µM, respectively. S-F and nourseothricin showed rapid, bactericidal activity. S-F and S-D both showed approximately 40-fold greater selectivity for prokaryotic than eukaryotic ribosomes in in vitro translation assays. In vivo, delayed renal toxicity occurred at >10-fold higher doses of S-F compared with S-D. Substantial treatment effect of S-F in the murine thigh model was observed against the otherwise pandrug-resistant, NDM-1-expressing Klebsiella pneumoniae Nevada strain with minimal or no toxicity. Cryo-EM characterization of S-F bound to the A. baumannii 70S ribosome defines extensive hydrogen bonding of the S-F steptolidine moiety, as a guanine mimetic, to the 16S rRNA C1054 nucleobase (Escherichia coli numbering) in helix 34, and the carbamoylated gulosamine moiety of S-F with A1196, explaining the high-level resistance conferred by corresponding mutations at the residues identified in single rrn operon E. coli. Structural analysis suggests that S-F probes the A-decoding site, which potentially may account for its miscoding activity. Based on unique and promising activity, we suggest that the streptothricin scaffold deserves further preclinical exploration as a potential therapeutic for drug-resistant, gram-negative pathogens.


Subject(s)
Anti-Bacterial Agents , Streptothricins , Animals , Mice , Anti-Bacterial Agents/pharmacology , Streptothricins/chemistry , Streptothricins/pharmacology , Escherichia coli/genetics , RNA, Ribosomal, 16S/genetics , Gram-Negative Bacteria , Carbapenems/pharmacology , Ribosomes , Microbial Sensitivity Tests
3.
Proc Natl Acad Sci U S A ; 120(52): e2315515120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38117855

ABSTRACT

Hair cells are the principal sensory receptors of the vertebrate auditory system, where they transduce sounds through mechanically gated ion channels that permit cations to flow from the surrounding endolymph into the cells. The lateral line of zebrafish has served as a key model system for understanding hair cell physiology and development, often with the belief that these hair cells employ a similar transduction mechanism. In this study, we demonstrate that these hair cells are exposed to an unregulated external environment with cation concentrations that are too low to support transduction. Our results indicate that hair cell excitation is instead mediated by a substantially different mechanism involving the outward flow of anions. Further investigation of hair cell transduction in a diversity of sensory systems and species will likely yield deep insights into the physiology of these unique cells.


Subject(s)
Lateral Line System , Zebrafish , Animals , Zebrafish/physiology , Lateral Line System/physiology , Hair Cells, Auditory/physiology , Sensory Receptor Cells , Endolymph
4.
Immunol Rev ; 311(1): 39-49, 2022 10.
Article in English | MEDLINE | ID: mdl-35909222

ABSTRACT

The blood-brain barrier (BBB) is a selectively permeable barrier separating the periphery from the central nervous system (CNS). The BBB restricts the flow of most material into and out of the CNS, including many drugs that could be used as potent therapies. BBB permeability is modulated by several cells that are collectively called the neurovascular unit (NVU). The NVU consists of specialized CNS endothelial cells (ECs), pericytes, astrocytes, microglia, and neurons. CNS ECs maintain a complex "seal" via tight junctions, forming the BBB; breakdown of these tight junctions leads to BBB disruption. Pericytes control the vascular flow within capillaries and help maintain the basal lamina. Astrocytes control much of the flow of material that has moved beyond the CNS EC layer and can form a secondary barrier under inflammatory conditions. Microglia survey the border of the NVU for noxious material. Neuronal activity also plays a role in the maintenance of the BBB. Since astrocytes, pericytes, microglia, and neurons are all able to modulate the permeability of the BBB, understating the complex contributions of each member of the NVU will potentially uncover novel and effective methods for delivery of neurotherapies to the CNS.


Subject(s)
Endothelial Cells , Pericytes , Astrocytes/metabolism , Blood-Brain Barrier/physiology , Central Nervous System , Endothelial Cells/physiology , Humans , Pericytes/metabolism
5.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354778

ABSTRACT

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase , Enzyme Assays , Genome, Fungal , Mutation , Protein Engineering , Aspergillus oryzae/enzymology , Aspergillus oryzae/genetics , Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose 1,4-beta-Cellobiosidase/classification , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Genome, Fungal/genetics , Protein Engineering/methods , Substrate Specificity , Talaromyces/enzymology , Talaromyces/genetics , Trichoderma/enzymology , Trichoderma/genetics , Trichoderma/metabolism , Biocatalysis
6.
Plant Physiol ; 194(4): 2136-2148, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-37987565

ABSTRACT

In plants, de novo DNA methylation is guided by 24-nt short interfering (si)RNAs in a process called RNA-directed DNA methylation (RdDM). Primarily targeted at transposons, RdDM causes transcriptional silencing and can indirectly influence expression of neighboring genes. During reproduction, a small number of siRNA loci are dramatically upregulated in the maternally derived seed coat, suggesting that RdDM might have a special function during reproduction. However, the developmental consequence of RdDM has been difficult to dissect because disruption of RdDM does not result in overt phenotypes in Arabidopsis (Arabidopsis thaliana), where the pathway has been most thoroughly studied. In contrast, Brassica rapa mutants lacking RdDM have a severe seed production defect, which is determined by the maternal sporophytic genotype. To explore the factors that underlie the different phenotypes of these species, we produced RdDM mutations in 3 additional members of the Brassicaceae family: Camelina sativa, Capsella rubella, and Capsella grandiflora. Among these 3 species, only mutations in the obligate outcrosser, C. grandiflora, displayed a seed production defect similar to Brassica rapa mutants, suggesting that mating system is a key determinant for reproductive phenotypes in RdDM mutants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassicaceae , DNA Methylation/genetics , Brassicaceae/genetics , Brassicaceae/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Small Interfering/genetics , RNA, Double-Stranded , Phenotype , Seeds/genetics , Seeds/metabolism , Reproduction , RNA, Plant/genetics , RNA, Plant/metabolism , Gene Expression Regulation, Plant
7.
NMR Biomed ; 37(3): e5059, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37872862

ABSTRACT

While single-shot late gadolinium enhancement (LGE) is useful for imaging patients with arrhythmia and/or dyspnea, it produces low spatial resolution. One approach to improve spatial resolution is to accelerate data acquisition using compressed sensing (CS). Our previous work described a single-shot, multi-inversion time (TI) LGE pulse sequence using radial k-space sampling and CS, but over-regularization resulted in significant image blurring that muted the benefits of data acceleration. The purpose of the present study was to improve the spatial resolution of the single-shot, multi-TI LGE pulse sequence by incorporating view sharing (VS) and k-space weighted contrast (KWIC) filtering into a GRASP-Pro reconstruction. In 24 patients (mean age = 61 ± 16 years; 9/15 females/males), we compared the performance of our improved multi-TI LGE and standard multi-TI LGE, where clinical standard LGE was used as a reference. Two clinical raters independently graded multi-TI images and clinical LGE images visually on a five-point Likert scale (1, nondiagnostic; 3, clinically acceptable; 5, best) for three categories: the conspicuity of myocardium or scar, artifact, and noise. The summed visual score (SVS) was defined as the sum of the three scores. Myocardial scar volume was quantified using the full-width at half-maximum method. The SVS was not significantly different between clinical breath-holding LGE (median 13.5, IQR 1.3) and multi-TI LGE (median 12.5, IQR 1.6) (P = 0.068). The myocardial scar volumes measured from clinical standard LGE and multi-TI LGE were strongly correlated (coefficient of determination, R2 = 0.99) and in good agreement (mean difference = 0.11%, lower limit of the agreement = -2.13%, upper limit of the agreement = 2.34%). The inter-rater agreement in myocardial scar volume quantification was strong (intraclass correlation coefficient = 0.79). The incorporation of VS and KWIC into GRASP-Pro improved spatial resolution. Our improved 25-fold accelerated, single-shot LGE sequence produces clinically acceptable image quality, multi-TI reconstruction, and accurate myocardial scar volume quantification.


Subject(s)
Contrast Media , Gadolinium , Male , Female , Humans , Middle Aged , Aged , Cicatrix/pathology , Magnetic Resonance Imaging/methods , Myocardium/pathology
8.
Phys Chem Chem Phys ; 26(15): 11445-11458, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38572552

ABSTRACT

A combination of infrared multiple-photon dissociation (IRMPD) action spectroscopy and quantum chemical calculations was employed to investigate the [M,C,2H]+ (M = Ru and Rh) species. These ions were formed by reacting laser ablated M+ ions with oxirane (ethylene oxide, c-C2H4O) in a room-temperature ion trap. IRMPD spectra for the Ru species exhibit one major band and two side bands, whereas spectra for the Rh species contain more distinct bands. Comparison with density functional theory (DFT), coupled-cluster (CCSD), and equation-of-motion spin-flip CCSD (EOM-SF-CCSD) calculations allows assignment of the [M,C,2H]+ structures. For the spectrum of [Ru,C,2H]+, a combination of HRuCH+ and RuCH2+ structures reproduces the observed spectrum at all levels of theory. The well-resolved spectrum of [Rh,C,2H]+ could not be assigned unambiguously to any calculated structure using DFT approaches. The EOM-SF-CCSD calculations showed that the ground-state surface has multireference electronic character, and symmetric carbenes in both the 1A1 and 3A2 states are needed to reproduce the observed spectrum.

9.
J Chem Phys ; 160(18)2024 May 14.
Article in English | MEDLINE | ID: mdl-38726931

ABSTRACT

The kinetic energy dependence of the title reaction is examined using guided ion beam tandem mass spectrometry. Because this reaction is spin-forbidden, crossings between octet and sextet hypersurfaces presumably must occur. Furthermore, Sm+ must transition from a 4f66s1 configuration in the reactant to 4f55d2 in order to have the orbital occupancy required to form the triple bond in SmO+ (6Δ). Despite being strongly exothermic (∼4 eV), the reaction proceeds with low efficiency (18% ± 4%) via a barrierless process at low energies. Below ∼0.3 eV, the cross section follows a kinetic energy dependence that roughly parallels that of the collision rate for ion-dipole reactions. At higher collision energies, the reaction cross section increases until it follows the trajectory cross section closely from 3 to 5 eV, indicating that another pathway opens on the reaction hypersurface. Modeling this increase yields a threshold energy for this new pathway at 0.54 ± 0.05 eV. Theoretical potential energy surfaces that do not include spin-orbit interactions for the reaction show that there is a barrier of height 1.19 eV (MP2) or 0.49 eV [CCSD(T)] to insertion of Sm+ into the N2-O bond and that there are several places where octet and sextet surfaces can intersect and interact. By considering the distribution of spin-orbit states generated in the ion source, the internal energy of the N2O reactant, and the influence of coupling between electronic, orbital, and rotational angular momentum, the low-efficiency, exothermic behavior as well as the increase in efficiency at higher energies can plausibly be explained.

10.
J Chem Phys ; 160(16)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38647300

ABSTRACT

A guided ion beam tandem mass spectrometer was used to study the reactions of U+ with N2 and NO. Reaction cross sections were measured over a wide range of energy for both systems. In each reaction, UN+ is formed by an endothermic process, thereby enabling the direct measurement of the threshold energy and determination of the UN+ bond dissociation energy. For the reaction of U+ + N2, a threshold energy (E0) of 4.02 ± 0.11 eV was measured, leading to D0 (UN+) = 5.73 ± 0.11 eV. The reaction of U+ + NO yields UO+ through an exothermic, barrierless process that proceeds with 94 ± 23% efficiency at the lowest energy. Analysis of the endothermic UN+ cross section in this reaction provides E0 = 0.72 ± 0.11 eV and, therefore, D0 (UN+) = 5.78 ± 0.11 eV. Averaging the values obtained from both reactions, we report D0 (UN+) = 5.76 ± 0.13 eV as our best value (uncertainty of two standard deviations). Combined with precise literature values for the ionization energies of U and UN, we also derive D0 (UN) = 5.86 ± 0.13 eV. Both bond dissociation energies agree well with high-level theoretical treatments in the literature. The formation of UN+ in reaction of U+ with NO also exhibits a considerable increase in reaction probability above ∼3 eV. Theory suggests that this may be consistent with the formation of UN+ in excited quintet spin states, which we hypothesize are dynamically favored because the number of 5f electrons in reactants and products is conserved.

11.
MAGMA ; 37(1): 83-92, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37934295

ABSTRACT

OBJECTIVES: CT is the clinical standard for surgical planning of craniofacial abnormalities in pediatric patients. This study evaluated three MRI cranial bone imaging techniques for their strengths and limitations as a radiation-free alternative to CT. METHODS: Ten healthy adults were scanned at 3 T with three MRI sequences: dual-radiofrequency and dual-echo ultrashort echo time sequence (DURANDE), zero echo time (ZTE), and gradient-echo (GRE). DURANDE bright-bone images were generated by exploiting bone signal intensity dependence on RF pulse duration and echo time, while ZTE bright-bone images were obtained via logarithmic inversion. Three skull segmentations were derived, and the overlap of the binary masks was quantified using dice similarity coefficient. Craniometric distances were measured, and their agreement was quantified. RESULTS: There was good overlap of the three masks and excellent agreement among craniometric distances. DURANDE and ZTE showed superior air-bone contrast (i.e., sinuses) and soft-tissue suppression compared to GRE. DISCUSSIONS: ZTE has low levels of acoustic noise, however, ZTE images had lower contrast near facial bones (e.g., zygomatic) and require effective bias-field correction to separate bone from air and soft-tissue. DURANDE utilizes a dual-echo subtraction post-processing approach to yield bone-specific images, but the sequence is not currently manufacturer-supported and requires scanner-specific gradient-delay corrections.


Subject(s)
Image Processing, Computer-Assisted , Skull , Adult , Humans , Child , Image Processing, Computer-Assisted/methods , Skull/diagnostic imaging , Magnetic Resonance Imaging/methods
12.
J Strength Cond Res ; 38(8): 1428-1432, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38662946

ABSTRACT

ABSTRACT: Witte, BC, Schouten, TC, Westphal, JA, VanZile, AW, Jones, DD, Widenhoefer, TL, Dobbs, WC, Jagim, AR, Luedke, JA, and Almonroeder, TG. The modified reactive strength index is a valid measure of lower-body explosiveness in male and female high school athletes. J Strength Cond Res 38(8): 1428-1432, 2024-The modified reactive strength index (mRSI) is a commonly used metric to quantify lower-body explosiveness during countermovement jump (CMJ) performance. However, few studies have attempted to examine its validity as a measure of explosiveness, particularly among high school athletes. The purpose of this study was to examine the validity of the mRSI as a measure of lower-body explosiveness among a relatively large sample of male and female high school athletes from various sports. As part of this study, male ( n = 132) and female ( n = 43) high school athletes performed CMJs, while ground reaction forces were recorded using a force platform. The vertical ground reaction force data collected during the CMJs were used to derive the following variables: peak force (PF), peak power, time to PF, time to take-off, peak rate of force development, and the mRSI. Principal component analysis was applied and reduced these variables into 2 components related to "force" and "speed." The mRSI loaded on both the force (loading = 0.82) and speed (loading = -0.46) components, indicating that it incorporates elements of both force and speed, although it loaded more strongly on the force component than the speed component. The observed pattern of cross-loading suggests that the mRSI is generally a valid measure of lower-body explosiveness for male and female high school athletes.


Subject(s)
Muscle Strength , Female , Male , Adolescent , Humans , Muscle Strength/physiology , Athletes , Athletic Performance/physiology , Lower Extremity/physiology , Reproducibility of Results , Exercise Test/methods
13.
Clin Gerontol ; 47(1): 136-148, 2024.
Article in English | MEDLINE | ID: mdl-36541672

ABSTRACT

OBJECTIVES: Emotional Awareness and Expression Therapy (EAET) targets trauma and emotional conflict to reduce or eliminate chronic pain, but video telehealth administration is untested. This uncontrolled pilot assessed acceptability, feasibility, and preliminary efficacy of group-based video telehealth EAET (vEAET) for older veterans with chronic musculoskeletal pain. METHODS: Twenty veterans were screened, and 16 initiated vEAET, delivered as one 60-minute individual session and eight 90-minute group sessions. Veterans completed posttreatment satisfaction ratings and pain severity (primary outcome), pain interference, anxiety, depression, functioning, social connectedness, shame, and anger questionnaires at baseline, posttreatment, and 2-month follow-up. RESULTS: Satisfaction was high, and veterans attended 7.4 (SD = 0.6) of 8 group sessions; none discontinued treatment. Veterans attained significant, large reductions in pain severity from baseline to posttreatment (p < .001, Hedges' g = -1.54) and follow-up (p < .001, g = -1.20); 14 of 16 achieved clinically significant (≥ 30%) pain reduction, and 3 achieved 90-100% pain reduction. Secondary outcomes demonstrated significant, medium-to-large improvements. CONCLUSIONS: In this small sample, vEAET produced better attendance, similar benefits, and fewer dropouts than in-person EAET in prior studies. Larger, controlled trials are needed. CLINICAL IMPLICATIONS: Group vEAET appears feasible and highly effective for older veterans with chronic pain.


Subject(s)
Chronic Pain , Telemedicine , Veterans , Humans , Chronic Pain/therapy , Veterans/psychology , Pilot Projects , Emotions
14.
J Infect Dis ; 228(5): 542-554, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37166076

ABSTRACT

BACKGROUND: Mechanisms underlying persistent cardiopulmonary symptoms after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (postacute sequelae of coronavirus disease 2019 [COVID-19; PASC] or "long COVID") remain unclear. This study sought to elucidate mechanisms of cardiopulmonary symptoms and reduced exercise capacity. METHODS: We conducted cardiopulmonary exercise testing (CPET), cardiac magnetic resonance imaging (CMR) and ambulatory rhythm monitoring among adults >1 year after SARS-CoV-2 infection, compared those with and those without symptoms, and correlated findings with previously measured biomarkers. RESULTS: Sixty participants (median age, 53 years; 42% female; 87% nonhospitalized; median 17.6 months after infection) were studied. At CPET, 18/37 (49%) with symptoms had reduced exercise capacity (<85% predicted), compared with 3/19 (16%) without symptoms (P = .02). The adjusted peak oxygen consumption (VO2) was 5.2 mL/kg/min lower (95% confidence interval, 2.1-8.3; P = .001) or 16.9% lower percent predicted (4.3%-29.6%; P = .02) among those with symptoms. Chronotropic incompetence was common. Inflammatory markers and antibody levels early in PASC were negatively correlated with peak VO2. Late-gadolinium enhancement on CMR and arrhythmias were absent. CONCLUSIONS: Cardiopulmonary symptoms >1 year after COVID-19 were associated with reduced exercise capacity, which was associated with earlier inflammatory markers. Chronotropic incompetence may explain exercise intolerance among some with "long COVID."


Subject(s)
COVID-19 , Exercise Tolerance , Female , Male , Humans , Contrast Media , Heart Rate , SARS-CoV-2 , Gadolinium , Inflammation , Phenotype
15.
Angew Chem Int Ed Engl ; 63(1): e202315284, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37956221

ABSTRACT

The discorhabdin natural products are a large subset of pyrroloiminoquinone alkaloids with a myriad of biological activities. Despite garnering much synthetic attention, few members have thus far been completed, particularly those featuring a bridging carbon-nitrogen bond that is found in numerous discorhabdins, including discorhabdin V. Herein we report the first total synthesis and full stereochemical assignment of (+)-discorhabdin V. To access the pyrroloiminoquinone we developed a convergent N-alkylation/oxidative aminocyclization/bromination cascade that joins two key components, which are both made on multigram scale. An intramolecular Heck reaction then forms the quaternary carbon center in an intermediate containing the carbon-nitrogen bridge, and a reductive N,O-acetal cyclization sequence introduces the final piperidine ring. Furthermore, we have established the relative configuration of (+)-discorhabdin V through experimental NOESY data and DP4 NMR probability calculations. The absolute configuration of the natural product has also been determined by circular dichroism and the use of an amino acid derived chiral starting material. Our work represents one of only two reports of a total synthesis of a nitrogen-bridged discorhabdin and paves the way for future biological evaluation of such compounds.

16.
Cancer Metastasis Rev ; 41(2): 447-458, 2022 06.
Article in English | MEDLINE | ID: mdl-35419769

ABSTRACT

Reprogrammed metabolism and high energy demand are well-established properties of cancer cells that enable tumor growth. Glycolysis is a primary metabolic pathway that supplies this increased energy demand, leading to a high rate of glycolytic flux and a greater dependence on glucose in tumor cells. Finding safe and effective means to control glycolytic flux and curb cancer cell proliferation has gained increasing interest in recent years. A critical step in glycolysis is controlled by the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which converts fructose 6-phosphate (F6P) to fructose 2,6-bisphosphate (F2,6BP). F2,6BP allosterically activates the rate-limiting step of glycolysis catalyzed by PFK1 enzyme. PFKFB3 is often overexpressed in many human cancers including pancreatic, colon, prostate, and breast cancer. Hence, PFKFB3 has gained increased interest as a compelling therapeutic target. In this review, we summarize and discuss the current knowledge of PFKFB3 functions, its role in cellular pathways and cancer development, its transcriptional and post-translational activity regulation, and the multiple pharmacologic inhibitors that have been used to block PFKFB3 activity in cancer cells. While much remains to be learned, PFKFB3 continues to hold great promise as an important therapeutic target either as a single agent or in combination with current interventions for breast and other cancers.


Subject(s)
Breast Neoplasms , Phosphofructokinase-2 , Fructose , Glucose/metabolism , Glycolysis/physiology , Humans , Male , Phosphofructokinase-2/metabolism
17.
Radiology ; 307(2): e221810, 2023 04.
Article in English | MEDLINE | ID: mdl-36692396

ABSTRACT

Background Preclinical studies have suggested that solid-state MRI markers of cortical bone porosity, morphologic structure, mineralization, and osteoid density are useful measures of bone health. Purpose To explore whether MRI markers of cortical bone porosity, morphologic structure, mineralization, and osteoid density are affected in postmenopausal osteoporosis (OP) and to examine associations between MRI markers and bone mineral density (BMD) in postmenopausal women. Materials and Methods In this single-center study, postmenopausal women were prospectively recruited from January 2019 to October 2020 into two groups: participants with OP who had not undergone treatment, defined as having any dual-energy x-ray absorptiometry (DXA) T-score of -2.5 or less, and age-matched control participants without OP (hereafter, non-OP). Participants underwent MRI in the midtibia, along with DXA in the hip and spine, and peripheral quantitative CT in the midtibia. Specifically, MRI measures of cortical bone porosity (pore water and total water), osteoid density (bound water [BW]), morphologic structure (cortical bone thickness), and mineralization (phosphorous [P] density [31P] and 31P-to-BW concentration ratio) were quantified at 3.0 T. MRI measures were compared between OP and non-OP groups and correlations with BMD were assessed. Results Fifteen participants with OP (mean age, 63 years ± 5 [SD]) and 19 participants without OP (mean age, 65 years ± 6) were evaluated. The OP group had elevated pore water (11.6 mol/L vs 9.5 mol/L; P = .007) and total water densities (21.2 mol/L vs 19.7 mol/L; P = .03), and had lower cortical bone thickness (4.8 mm vs 5.6 mm; P < .001) and 31P density (6.4 mol/L vs 7.5 mol/L; P = .01) than the non-OP group, respectively, although there was no evidence of a difference in BW or 31P-to-BW concentration ratio. Pore and total water densities were inversely associated with DXA and peripheral quantitative CT BMD (P < .001), whereas cortical bone thickness and 31P density were positively associated with DXA and peripheral quantitative CT BMD (P = .01). BW, 31P density, and 31P-to-BW concentration ratio were positively associated with DXA (P < .05), but not with peripheral quantitative CT. Conclusion Solid-state MRI of cortical bone was able to help detect potential impairments in parameters reflecting porosity, morphologic structure, and mineralization in postmenopausal osteoporosis. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Bae in this issue.


Subject(s)
Osteoporosis, Postmenopausal , Female , Humans , Middle Aged , Aged , Osteoporosis, Postmenopausal/diagnostic imaging , Porosity , Bone Density , Absorptiometry, Photon , Cortical Bone/diagnostic imaging , Water , Magnetic Resonance Imaging
18.
J Neuroinflammation ; 20(1): 234, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37828609

ABSTRACT

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS). Infiltrating inflammatory immune cells perpetuate demyelination and axonal damage in the CNS and significantly contribute to pathology and clinical deficits. While the cytokine interferon (IFN)γ is classically described as deleterious in acute CNS autoimmunity, we and others have shown astrocytic IFNγ signaling also has a neuroprotective role. Here, we performed RNA sequencing and ingenuity pathway analysis on IFNγ-treated astrocytes and found that PD-L1 was prominently expressed. Interestingly, PD-1/PD-L1 antagonism reduced apoptosis in leukocytes exposed to IFNγ-treated astrocytes in vitro. To further elucidate the role of astrocytic IFNγ signaling on the PD-1/PD-L1 axis in vivo, we induced the experimental autoimmune encephalomyelitis (EAE) model of MS in Aldh1l1-CreERT2, Ifngr1fl/fl mice. Mice with conditional astrocytic deletion of IFNγ receptor exhibited a reduction in PD-L1 expression which corresponded to increased infiltrating leukocytes, particularly from the myeloid lineage, and exacerbated clinical disease. PD-1 agonism reduced EAE severity and CNS-infiltrating leukocytes. Importantly, PD-1 is expressed by myeloid cells surrounding MS lesions. These data support that IFNγ signaling in astrocytes diminishes inflammation during chronic autoimmunity via upregulation of PD-L1, suggesting potential therapeutic benefit for MS patients.


Subject(s)
B7-H1 Antigen , Encephalomyelitis, Autoimmune, Experimental , Interferon-gamma , Multiple Sclerosis , Neurodegenerative Diseases , Animals , Humans , Mice , Astrocytes/metabolism , Autoimmunity , B7-H1 Antigen/metabolism , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/pathology , Inflammation/metabolism , Interferon-gamma/metabolism , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Neurodegenerative Diseases/metabolism , Programmed Cell Death 1 Receptor/metabolism
19.
Small ; 19(6): e2205487, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36470595

ABSTRACT

Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3-4 nm ultrathin MgB2 nanosheets (multilayers) in high yield. High-pressure hydrogenation of these multilayers at 70 MPa and 330 °C followed by dehydrogenation at 390 °C reveals a hydrogen capacity of 5.1 wt%, which is ≈50 times larger than the capacity of bulk MgB2 under the same conditions. This enhancement is attributed to the creation of defective sites by ball-milling and incomplete Mg surface coverage in MgB2 multilayers, which disrupts the stable boron-boron ring structure. The density functional theory calculations indicate that the balance of Mg on the MgB2 nanosheet surface changes as the material hydrogenates, as it is energetically favorable to trade a small number of Mg vacancies in Mg(BH4 )2 for greater Mg coverage on the MgB2 surface. The exfoliation and creation of ultrathin layers is a promising new direction for 2D metal boride/borohydride research with the potential to achieve high-capacity reversible hydrogen storage at more moderate pressures and temperatures.

20.
Crit Care Med ; 51(6): 775-786, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36927631

ABSTRACT

OBJECTIVES: Implementing a predictive analytic model in a new clinical environment is fraught with challenges. Dataset shifts such as differences in clinical practice, new data acquisition devices, or changes in the electronic health record (EHR) implementation mean that the input data seen by a model can differ significantly from the data it was trained on. Validating models at multiple institutions is therefore critical. Here, using retrospective data, we demonstrate how Predicting Intensive Care Transfers and other UnfoReseen Events (PICTURE), a deterioration index developed at a single academic medical center, generalizes to a second institution with significantly different patient population. DESIGN: PICTURE is a deterioration index designed for the general ward, which uses structured EHR data such as laboratory values and vital signs. SETTING: The general wards of two large hospitals, one an academic medical center and the other a community hospital. SUBJECTS: The model has previously been trained and validated on a cohort of 165,018 general ward encounters from a large academic medical center. Here, we apply this model to 11,083 encounters from a separate community hospital. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The hospitals were found to have significant differences in missingness rates (> 5% difference in 9/52 features), deterioration rate (4.5% vs 2.5%), and racial makeup (20% non-White vs 49% non-White). Despite these differences, PICTURE's performance was consistent (area under the receiver operating characteristic curve [AUROC], 0.870; 95% CI, 0.861-0.878), area under the precision-recall curve (AUPRC, 0.298; 95% CI, 0.275-0.320) at the first hospital; AUROC 0.875 (0.851-0.902), AUPRC 0.339 (0.281-0.398) at the second. AUPRC was standardized to a 2.5% event rate. PICTURE also outperformed both the Epic Deterioration Index and the National Early Warning Score at both institutions. CONCLUSIONS: Important differences were observed between the two institutions, including data availability and demographic makeup. PICTURE was able to identify general ward patients at risk of deterioration at both hospitals with consistent performance (AUROC and AUPRC) and compared favorably to existing metrics.


Subject(s)
Critical Care , Patients' Rooms , Humans , Retrospective Studies , ROC Curve , Hospitals, Community
SELECTION OF CITATIONS
SEARCH DETAIL