Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Biol Chem ; 287(29): 24814-20, 2012 Jul 13.
Article in English | MEDLINE | ID: mdl-22674575

ABSTRACT

The RNA-binding protein, trans-active response DNA-binding protein 43 (TDP-43), is normally found in the nucleus, but in amyotrophic lateral sclerosis, frontal temporal dementia, and some cases of Alzheimer disease it is cleaved and mislocalized to the cytosol, leading to accumulation. The mechanisms contributing to this are largely unknown. Here, we show that part of the normal clearance cascade for TDP-43 involves the Cdc37/Hsp90 complex. An Hsp90 inhibitor that disrupts the Cdc37/Hsp90 complex reduced TDP-43 levels to a greater extent than a standard Hsp90 ATPase inhibitor. When Cdc37 was depleted, TDP-43 underwent proteolytic clearance that was dependent on nuclear retrotranslocation and autophagic uptake. Accumulation of the microtubule-associated protein tau prevented the clearance of cleaved TDP-43, but not its production. This caused cleaved TDP-43 to accumulate, a feature observed in the brain of persons with Alzheimer disease. Clearance of cleaved TDP-43 was also prevented by knockdown of the autophagic inducer beclin1. Thus, in cells where TDP-43 clearance is normally needed, a system that employs manipulation of the Hsp90 complex and autophagy exists. But when tau accumulation is occurring, cleaved TDP-43 can no longer be cleared, perhaps explaining the emergence of these co-pathologies.


Subject(s)
Cell Cycle Proteins/metabolism , Chaperonins/metabolism , DNA-Binding Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Cell Cycle Proteins/genetics , Chaperonins/genetics , DNA-Binding Proteins/genetics , HSP90 Heat-Shock Proteins/genetics , HeLa Cells , Humans , Immunohistochemistry , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , tau Proteins/genetics , tau Proteins/metabolism
2.
Curr Aging Sci ; 8(3): 259-65, 2015.
Article in English | MEDLINE | ID: mdl-25989799

ABSTRACT

Leucine-Rich Repeat Kinase 2 (LRRK2) is a large, multi-domain protein that has been found to be mutated in patients with familial and sporadic Parkinson's disease, Alzheimer's disease and Crohn's disease. While the functions of LRRK2 are still largely unclear and mutations in LRRK2 are associated with adverse gain-of-function activities such as increased kinase activity, increased levels of LRRK2 alone are associated with toxicity in neurons. Consequently, exploring mechanisms to decrease levels of LRRK2 using pharmacological inhibitors would be highly advantageous. Previous work has shown that the chaperone heat shock protein 90 (Hsp90) and its co-chaperone Cdc37 interact with and stabilize LRRK2. In the current study, we explore the regulation of LRRK2 by withaferin A (WA), a potent inhibitor of the interaction between Hsp90 and Cdc37. We report that treatment of the microglial cell line N9 with WA causes a decrease in cellular levels of LRRK2 in a dose- and time-dependent manner. We also find that treatment with WA disrupts the interaction between Hsp90, its co-chaperone Cdc37 and LRRK2, which leads to the destabilization and decreased levels of LRRK2. Additionally, treatment with celastrol, which is also an inhibitor of the Hsp90-Cdc37 complex, decreased LRRK2 levels. Interestingly, treatment with WA in the presence of celastrol enhanced the clearance of LRRK2. Overall, our data suggest that LRRK2 levels can be regulated by targeting the Hsp90-Cdc37 complex, which may have implications in the search for therapeutic strategies for Alzheimer's disease, Parkinson's disease and other LRRK2 proteinopathies.


Subject(s)
Cell Cycle Proteins/metabolism , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Withanolides/pharmacology , Animals , Cell Line , Mice , Protein Binding/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL