Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Publication year range
1.
Mol Ther ; 32(6): 1701-1720, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38549375

ABSTRACT

Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.


Subject(s)
Astrocytes , Dependovirus , Disease Models, Animal , Eukaryotic Initiation Factor-2B , Genetic Therapy , Genetic Vectors , Leukoencephalopathies , Animals , Dependovirus/genetics , Mice , Leukoencephalopathies/therapy , Leukoencephalopathies/genetics , Leukoencephalopathies/etiology , Genetic Therapy/methods , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Astrocytes/metabolism , Astrocytes/pathology , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glial Fibrillary Acidic Protein/genetics , Humans
2.
Lupus ; 29(13): 1790-1799, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33045900

ABSTRACT

OBJECTIVE: Since enhanced cardiac magnetic resonance imaging (cMRI) signals have been associated with lupus disease activity in humans prior to renal failure and novel, cardiac-focused therapeutic strategies could be investigated with an associated animal model, autoimmune myocarditis was characterized in murine lupus nephritis (NZM2410). METHODS: Weekly blood urea nitrogen (BUN) levels and weights were recorded. Cardiac function was assessed by echocardiogram. Myocardial edema was measured with quantitative T2 cMRI mapping. Endpoint serum and cardiac tissue were collected for histopathological analysis and cytokine measurements. RESULTS: Despite showing no signs of significant renal disease, mice displayed evidence of myocarditis and fibrosis histologically at 30-35 weeks. Moreover, T2 cMRI mapping displayed robust signals and analysis of sagittal heart sections showed significant myocardium thickening. Cytokine expression levels of IL-2, IL-10, TNF-α, CXCL1, and IL-6 were significantly enhanced in serum. Echocardiograms demonstrated significantly increased ventricular diameters and reduced ejection fractions, while immunohistochemical staining identified CD4+ and CD8+ T cells, and IL-17 in cardiac infiltrates. Human lupus cardiac tissue showed similar histopathology with enhanced infiltrates by H&E, fibrosis, and CD4+ detection. CONCLUSIONS: Histopathology, functional abnormalities, and enhanced cMRI signals indicative of myocarditis are detected in NZM2410 mice without glomerulonephritis, which supports the primary pathological role of autoimmune-mediated, cardiac-targeted inflammation in lupus.


Subject(s)
Glomerulonephritis/pathology , Lupus Nephritis/pathology , Myocarditis/pathology , Myocardium/pathology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Disease Models, Animal , Echocardiography , Female , Fibrosis , Interleukin-17/metabolism , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Myocarditis/immunology , Myocarditis/metabolism
3.
Ann Diagn Pathol ; 36: 12-20, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29966831

ABSTRACT

Spinal cord paralysis is relatively common after surgical repair of thoraco-abdominal aortic aneurysm (TAAA) and its etiology is unknown. The present study was designed to examine the histopathology of the disease and investigate whether miR-155 ablation would reduce spinal cord ischemic damage and delayed hindlimb paralysis induced by aortic cross-clamping (ACC) in our mouse model. The loss of locomotor function in ACC-paralyzed mice correlated with the presence of extensive gray matter damage and central cord edema, with minimal white matter histopathology. qRTPCR and Western blotting showed that the spinal cords of wild-type ACC mice that escaped paralysis showed lower miR-155 expression and higher levels of transcripts encoding Mfsd2a, which is implicated in the maintenance of blood-brain barrier integrity. In situ based testing demonstrated that increased miR-155 detection in neurons was highly correlated with the gray matter damage and the loss of one of its targets, Mfsd2a, could serve as a good biomarker of the endothelial cell damage. In vitro, we demonstrated that miR-155 targeted Mfsd2a in endothelial cells and motoneurons and increased endothelial cell permeability. Finally, miR-155 ablation slowed the progression of central cord edema, and reduced the incidence of paralysis by 40%. In sum, the surgical pathology findings clearly indicated that the epicenter of the ischemic-induced paralysis was the gray matter and that endothelial cell damage correlated to Mfsd2a loss is a good biomarker of the disease. MiR-155 targeting therefore offers new therapeutic opportunity for edema caused by traumatic spinal cord injury and diagnostic pathologists, by using immunohistochemistry, can clarify if this mechanism also is important in other ischemic diseases of the CNS, including stroke.


Subject(s)
Ischemia/metabolism , Membrane Transport Proteins/genetics , MicroRNAs/genetics , Spinal Cord Injuries/genetics , Animals , Disease Models, Animal , Immunohistochemistry/methods , Ischemia/genetics , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Nervous System Diseases/genetics , Neurons/metabolism , Spinal Cord/pathology , Spinal Cord Injuries/physiopathology , Symporters , Tumor Suppressor Proteins/genetics
4.
PLoS Genet ; 9(3): e1003311, 2013.
Article in English | MEDLINE | ID: mdl-23505378

ABSTRACT

MicroRNAs (miRNAs), single-stranded non-coding RNAs, influence myriad biological processes that can contribute to cancer. Although tumor-suppressive and oncogenic functions have been characterized for some miRNAs, the majority of microRNAs have not been investigated for their ability to promote and modulate tumorigenesis. Here, we established that the miR-191/425 cluster is transcriptionally dependent on the host gene, DALRD3, and that the hormone 17ß-estradiol (estrogen or E2) controls expression of both miR-191/425 and DALRD3. MiR-191/425 locus characterization revealed that the recruitment of estrogen receptor α (ERα) to the regulatory region of the miR-191/425-DALRD3 unit resulted in the accumulation of miR-191 and miR-425 and subsequent decrease in DALRD3 expression levels. We demonstrated that miR-191 protects ERα positive breast cancer cells from hormone starvation-induced apoptosis through the suppression of tumor-suppressor EGR1. Furthermore, enforced expression of the miR-191/425 cluster in aggressive breast cancer cells altered global gene expression profiles and enabled us to identify important tumor promoting genes, including SATB1, CCND2, and FSCN1, as targets of miR-191 and miR-425. Finally, in vitro and in vivo experiments demonstrated that miR-191 and miR-425 reduced proliferation, impaired tumorigenesis and metastasis, and increased expression of epithelial markers in aggressive breast cancer cells. Our data provide compelling evidence for the transcriptional regulation of the miR-191/425 cluster and for its context-specific biological determinants in breast cancers. Importantly, we demonstrated that the miR-191/425 cluster, by reducing the expression of an extensive network of genes, has a fundamental impact on cancer initiation and progression of breast cancer cells.


Subject(s)
Breast Neoplasms , Early Growth Response Protein 1 , Estrogen Receptor alpha , MicroRNAs , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
5.
Eur Heart J ; 36(35): 2390-401, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26059724

ABSTRACT

AIMS: The complex architecture of the human atria may create physical substrates for sustained re-entry to drive atrial fibrillation (AF). The existence of sustained, anatomically defined AF drivers in humans has been challenged partly due to the lack of simultaneous endocardial-epicardial (Endo-Epi) mapping coupled with high-resolution 3D structural imaging. METHODS AND RESULTS: Coronary-perfused human right atria from explanted diseased hearts (n = 8, 43-72 years old) were optically mapped simultaneously by three high-resolution CMOS cameras (two aligned Endo-Epi views (330 µm2 resolution) and one panoramic view). 3D gadolinium-enhanced magnetic resonance imaging (GE-MRI, 80 µm3 resolution) revealed the atrial wall structure varied in thickness (1.0 ± 0.7-6.8 ± 2.4 mm), transmural fiber angle differences, and interstitial fibrosis causing transmural activation delay from 23 ± 11 to 43 ± 22 ms at increased pacing rates. Sustained AF (>90 min) was induced by burst pacing during pinacidil (30-100 µM) perfusion. Dual-sided sub-Endo-sub-Epi optical mapping revealed that AF was driven by spatially and temporally stable intramural re-entry with 107 ± 50 ms cycle length and transmural activation delay of 67 ± 31 ms. Intramural re-entrant drivers were captured primarily by sub-Endo mapping, while sub-Epi mapping visualized re-entry or 'breakthrough' patterns. Re-entrant drivers were anchored on 3D micro-anatomic tracks (15.4 ± 2.2 × 6.0 ± 2.3 mm2, 2.9 ± 0.9 mm depth) formed by atrial musculature characterized by increased transmural fiber angle differences and interstitial fibrosis. Targeted radiofrequency ablation of the tracks verified these re-entries as drivers of AF. CONCLUSIONS: Integrated 3D structural-functional mapping of diseased human right atria ex vivo revealed that the complex atrial microstructure caused significant differences between Endo vs. Epi activation during pacing and sustained AF driven by intramural re-entry anchored to fibrosis-insulated atrial bundles.


Subject(s)
Atrial Fibrillation/pathology , Heart Atria/pathology , Adult , Aged , Atrial Fibrillation/etiology , Atrial Fibrillation/physiopathology , Cardiac Imaging Techniques , Contrast Media , Epicardial Mapping/methods , Gadolinium , Heart Atria/physiopathology , Humans , Magnetic Resonance Angiography/methods , Middle Aged
6.
J Neurosci ; 33(32): 12970-81, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23926252

ABSTRACT

Autonomic dysreflexia (AD), a potentially dangerous complication of high-level spinal cord injury (SCI) characterized by exaggerated activation of spinal autonomic (sympathetic) reflexes, can cause pulmonary embolism, stroke, and, in severe cases, death. People with high-level SCI also are immune compromised, rendering them more susceptible to infectious morbidity and mortality. The mechanisms underlying postinjury immune suppression are not known. Data presented herein indicate that AD causes immune suppression. Using in vivo telemetry, we show that AD develops spontaneously in SCI mice with the frequency of dysreflexic episodes increasing as a function of time postinjury. As the frequency of AD increases, there is a corresponding increase in splenic leucopenia and immune suppression. Experimental activation of spinal sympathetic reflexes in SCI mice (e.g., via colorectal distension) elicits AD and exacerbates immune suppression via a mechanism that involves aberrant accumulation of norepinephrine and glucocorticoids. Reversal of postinjury immune suppression in SCI mice can be achieved by pharmacological inhibition of receptors for norepinephrine and glucocorticoids during the onset and progression of AD. In a human subject with C5 SCI, stimulating the micturition reflex caused AD with exaggerated catecholamine release and impaired immune function, thus confirming the relevance of the mouse data. These data implicate AD as a cause of secondary immune deficiency after SCI and reveal novel therapeutic targets for overcoming infectious complications that arise due to deficits in immune function.


Subject(s)
Autonomic Dysreflexia , Immune System Diseases/etiology , Immunosuppression Therapy , Spinal Cord Injuries/complications , Adrenergic beta-2 Receptor Antagonists/pharmacology , Animals , Antigens, CD/metabolism , Autonomic Dysreflexia/complications , Autonomic Dysreflexia/etiology , Autonomic Dysreflexia/immunology , Blood Pressure/immunology , Butoxamine/pharmacology , Colon/innervation , Corticosterone/blood , Disease Models, Animal , Epinephrine/blood , Female , Hormone Antagonists/pharmacology , Humans , Mice , Mifepristone/pharmacology , Norepinephrine/blood , Ovalbumin/immunology , Physical Stimulation/adverse effects , Spinal Cord Injuries/immunology , T-Lymphocytes/classification , T-Lymphocytes/metabolism , Telemetry
7.
Am J Pathol ; 183(6): 1719-1730, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24113455

ABSTRACT

Loss of miR-122 causes chronic steatohepatitis and spontaneous hepatocellular carcinoma. However, the consequence of miR-122 deficiency on genotoxic stress-induced liver pathogenesis is poorly understood. Here, we investigated the impact of miR-122 depletion on liver pathobiology by treating liver-specific miR-122 knockout (LKO) mice with the hepatocarcinogen diethylnitrosamine (DEN). At 25 weeks post-DEN injection, all LKO mice developed CK-19-positive hepatobiliary cysts, which correlated with DEN-induced transcriptional activation of Cdc25a mediated through E2f1. Additionally, LKO livers were more fibrotic and vascular, and developed larger microscopic tumors, possibly due to elevation of the Axl oncogene, a receptor tyrosine kinase as a novel target of miR-122, and several protumorigenic miR-122 targets. At 35 weeks following DEN exposure, LKO mice exhibited a higher incidence of macroscopic liver tumors (71%) and cysts (86%) compared to a 21.4% and 0% incidence of tumors and cysts, respectively, in control mice. The tumors in LKO mice were bigger (ninefold, P = 0.015) and predominantly hepatocellular carcinoma, whereas control mice mostly developed hepatocellular adenoma. DEN treatment also reduced survival of LKO mice compared to control mice (P = 0.03). Interestingly, induction of oxidative stress and proinflammatory cytokines in LKO liver shortly after DEN exposure indicates predisposition of a pro-tumorigenic microenvironment. Collectively, miR-122 depletion facilitates cystogenesis and hepatocarcinogenesis in mice on DEN challenge by up-regulating several genes involved in proliferation, growth factor signaling, neovascularization, and metastasis.


Subject(s)
Alkylating Agents/adverse effects , Carcinoma, Hepatocellular , Cysts , Diethylnitrosamine/adverse effects , Liver Neoplasms , MicroRNAs , Alkylating Agents/pharmacology , Animals , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Cysts/chemically induced , Cysts/genetics , Cysts/metabolism , Cysts/pathology , Cytokines/biosynthesis , Cytokines/genetics , Diethylnitrosamine/pharmacology , E2F1 Transcription Factor/biosynthesis , E2F1 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/genetics , Liver Neoplasms/chemically induced , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Metastasis , Proto-Oncogene Proteins/biosynthesis , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/biosynthesis , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , cdc25 Phosphatases/biosynthesis , cdc25 Phosphatases/genetics , Axl Receptor Tyrosine Kinase
8.
BMC Cancer ; 14: 206, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24646176

ABSTRACT

BACKGROUND: Medulloblastoma is the most common type of pediatric brain tumor. Although numerous factors influence patient survival rates, more than 30% of all cases will ultimately be refractory to conventional therapies. Current standards of care are also associated with significant morbidities, giving impetus for the development of new treatments. We have previously shown that oncolytic measles virotherapy is effective against medulloblastoma, leading to significant prolongation of survival and even cures in mouse xenograft models of localized and metastatic disease. Because medulloblastomas are known to be highly vascularized tumors, we reasoned that the addition of angiogenesis inhibitors could further enhance the efficacy of oncolytic measles virotherapy. Toward this end, we have engineered an oncolytic measles virus that express a fusion protein of endostatin and angiostatin, two endogenous and potent inhibitors of angiogenesis. METHODS: Oncolytic measles viruses encoding human and mouse variants of a secretable endostatin/angiostatin fusion protein were designed and rescued according to established protocols. These viruses, known as MV-hE:A and MV-mE:A respectively, were then evaluated for their anti-angiogenic potential and efficacy against medulloblastoma cell lines and orthotopic mouse models of localized disease. RESULTS: Medulloblastoma cells infected by MV-E:A readily secrete endostatin and angiostatin prior to lysis. The inclusion of the endostatin/angiostatin gene did not negatively impact the measles virus' cytotoxicity against medulloblastoma cells or alter its growth kinetics. Conditioned media obtained from these infected cells was capable of inhibiting multiple angiogenic factors in vitro, significantly reducing endothelial cell tube formation, viability and migration compared to conditioned media derived from cells infected by a control measles virus. Mice that were given a single intratumoral injection of MV-E:A likewise showed reduced numbers of tumor-associated blood vessels and a trend for increased survival compared to mice treated with the control virus. CONCLUSIONS: These data suggest that oncolytic measles viruses encoding anti-angiogenic proteins may have therapeutic benefit against medulloblastoma and support ongoing efforts to target angiogenesis in medulloblastoma.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Angiostatins/antagonists & inhibitors , Endostatins/antagonists & inhibitors , Measles virus/physiology , Medulloblastoma/therapy , Oncolytic Virotherapy/adverse effects , Animals , Cell Line, Tumor , Chlorocebus aethiops , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Measles virus/genetics , Medulloblastoma/pathology , Mice , Neoplasms, Experimental , Oncolytic Viruses/genetics , Vero Cells , Xenograft Model Antitumor Assays
9.
Biomaterials ; 308: 122562, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583365

ABSTRACT

Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model. Injured IVDs treated with eEVs loaded with FOXF1 demonstrated robust sex-specific reductions in pain behaviors compared to control groups. Furthermore, significant restoration of IVD structure and function in animals treated with FOXF1 eEVs were observed, with significant increases in disc height, tissue hydration, proteoglycan content, and mechanical properties. This is the first study to successfully restore tissue function while modulating pain behaviors in an animal model of DBP using eEV-based non-viral delivery of transcription factor genes. Such a strategy can be readily translated to other painful musculoskeletal disorders.


Subject(s)
Extracellular Vesicles , Genetic Therapy , Intervertebral Disc Degeneration , Animals , Extracellular Vesicles/metabolism , Genetic Therapy/methods , Female , Male , Intervertebral Disc Degeneration/therapy , Intervertebral Disc Degeneration/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Intervertebral Disc/pathology , Rats, Sprague-Dawley , Back Pain/therapy , Back Pain/genetics , Low Back Pain/therapy
10.
Mol Ther ; 20(2): 287-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22031239

ABSTRACT

Here, we describe the construction and testing of a novel herpes simplex virus type 1 (HSV-1) derived oncolytic virus (OV): 34.5ENVE (viral ICP34.5 Expressed by Nestin promotor and Vstat120 Expressing), for the treatment of cancer. This virus showed significant glioma-specific killing and antiangiogenic effects in vitro and in vivo. Treatment of subcutaneous and intracranial glioma-bearing mice with 34.5ENVE showed a significant increase in median survival of mice in four different glioma models. Histology and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) revealed reduced microvessel density (MVD) and increased tumoral necrosis in 34.5ENVE-treated tumor tissue compared to control OV-treated tumor tissue. Collectively, these results describe the construction, efficacy, and impact on tumor microenvironment of a transcriptionally driven OV armed with Vstat120 gene expression. These preclinical results will facilitate future clinical testing of 34.5ENVE.


Subject(s)
Genetic Vectors/genetics , Herpesvirus 1, Human/genetics , Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Animals , Cell Line , Cell Movement , Cytopathogenic Effect, Viral , Endothelial Cells/metabolism , Endothelial Cells/virology , Female , Gene Expression , Gene Order , Genetic Therapy , Glioma/genetics , Glioma/therapy , Humans , Intermediate Filament Proteins/genetics , Mice , Mice, Nude , Necrosis/genetics , Neoplasms/genetics , Neoplasms/mortality , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Nerve Tissue Proteins/genetics , Nestin , Survival Analysis , Virus Replication
11.
Vet Comp Oncol ; 21(3): 492-502, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37254642

ABSTRACT

High-grade glioma is an aggressive cancer that occurs naturally in pet dogs. Canine high-grade glioma (cHGG) is treated with radiation, chemotherapy or surgery, but has no curative treatment. Within the past eight years, there have been advances in our imaging and histopathology standards as well as genetic charactereization of cHGG. However, there are only three cHGG cell lines publicly available, all of which were derived from astrocytoma and established using methods involving expansion of tumour cells in vitro on plastic dishes. In order to provide more clinically relevant cell lines for studying cHGG in vitro, the goal of this study was to establish cHGG patient-derived lines, whereby cancer cells are expanded in vivo by injecting cells into immunocompromized laboratory mice. The cells are then harvested from mice and used for in vitro studies. This method is the standard in the human field and has been shown to minimize the acquisition of genetic alterations and gene expression changes from the original tumour. Through a multi-institutional collaboration, we describe our methods for establishing two novel cHGG patient-derived lines, Boo-HA and Mo-HO, from a high-grade astrocytoma and a high-grade oligodendroglioma, respectively. We compare our novel lines to G06-A, J3T-Bg, and SDT-3G (traditional cHGG cell lines) in terms of proliferation and sensitivity to radiation. We also perform whole genome sequencing and identify an NF1 truncating mutation in Mo-HO. We report the characterization and availability of these novel patient-derived lines for use by the veterinary community.


Subject(s)
Astrocytoma , Brain Neoplasms , Dog Diseases , Glioma , Humans , Dogs , Animals , Mice , Glioma/genetics , Glioma/veterinary , Glioma/metabolism , Astrocytoma/genetics , Astrocytoma/veterinary , Brain Neoplasms/genetics , Brain Neoplasms/veterinary , Brain Neoplasms/pathology
12.
Am J Respir Cell Mol Biol ; 47(4): 543-51, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22679275

ABSTRACT

Acute respiratory disease is associated with significant morbidity and mortality in influenza. Because antiviral drugs are only effective early in infection, new agents are needed to treat nonvaccinated patients presenting with late-stage disease, particularly those who develop acute respiratory distress syndrome. We found previously that the de novo pyrimidine synthesis inhibitor A77-1726 reversed the influenza-induced impairment of alveolar fluid clearance. Patients with acute respiratory distress syndrome and intact alveolar fluid clearance demonstrate lower mortality than those with compromised fluid clearance. We therefore investigated the effects of treatment with nebulized A77-1726 (67.5 mg/kg) on indices of cardiopulmonary function relevant to the diagnosis of acute respiratory distress syndrome. BALB/cAnNCr mice (8-12 wk old) were inoculated intranasally with 10,000 plaque-forming units/mouse influenza A/WSN/33 (H1N1). Pulse oximetry was performed daily. Alveolar fluid clearance, lung water, and lung mechanics were measured at 2 and 6 days after inoculation in live, ventilated mice by BSA instillation, magnetic resonance imaging, and forced-oscillation techniques, respectively. A77-1726 treatment at 1 day after inoculation delayed mortality. Treatment on Days 1 or 5 reduced viral replication on Day 6, and improved alveolar fluid clearance, peripheral oxygenation, and cardiac function. Nebulized A77-1726 also reversed influenza-induced increases in lung water content and volume, improved pulmonary mechanics, reduced bronchoalveolar lavage fluid ATP and neutrophil content, and increased IL-6 concentrations. The ability of A77-1726 to improve cardiopulmonary function in influenza-infected mice and to reduce the severity of ongoing acute respiratory distress syndrome late in infection suggests that pyrimidine synthesis inhibitors are promising therapeutic candidates for the management of severe influenza.


Subject(s)
Aniline Compounds/administration & dosage , Antiviral Agents/administration & dosage , Hydroxybutyrates/administration & dosage , Influenza A Virus, H1N1 Subtype/physiology , Orthomyxoviridae Infections/drug therapy , Respiratory Distress Syndrome/prevention & control , Administration, Inhalation , Airway Resistance/drug effects , Aniline Compounds/pharmacology , Animals , Antiviral Agents/pharmacology , Bronchoalveolar Lavage Fluid , Carotid Arteries/physiopathology , Crotonates , Cytokines/metabolism , Drug Evaluation, Preclinical , Heart Rate/drug effects , Hydroxybutyrates/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Lung/drug effects , Lung/pathology , Lung/physiopathology , Mice , Mice, Inbred BALB C , Neutrophils/immunology , Nitriles , Orthomyxoviridae Infections/physiopathology , Orthomyxoviridae Infections/virology , Oxygen/blood , Pulmonary Edema/immunology , Pulmonary Edema/physiopathology , Pulmonary Edema/prevention & control , Pulmonary Edema/virology , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/virology , Respiratory Rate/drug effects , Toluidines , Virus Replication/drug effects
13.
Stud Health Technol Inform ; 173: 500-5, 2012.
Article in English | MEDLINE | ID: mdl-22357044

ABSTRACT

Translational science requires the use of mouse models for the characterization of disease and evaluation of treatment therapies. However, often there is a lack of comprehensive training for scientists in the systemic and regional anatomy of the mouse that limits their ability to perform studies involving complex interventional procedures. We present our methodologies for the development, evaluation, and dissemination of an interactive 3D mouse atlas that includes designs for presenting emulation of procedural technique. We present the novel integration of super-resolution imaging techniques, depth-of-field interactive volume rendering of large data, and the seamless delivery of remote visualization and interaction to thin clients.


Subject(s)
Anatomy , Computer Simulation , Image Processing, Computer-Assisted/methods , Animals , Imaging, Three-Dimensional , Mice
14.
Front Mol Neurosci ; 15: 788301, 2022.
Article in English | MEDLINE | ID: mdl-35185466

ABSTRACT

Aortic aneurism open repair surgery can cause spinal cord (SC) injury with 5-15% of patients developing paraparesis or paraplegia. Using a mouse model of transient aortic cross-clamping (ACC), we have previously found that the expression of proinflammatory microRNA miR-155 increases in motoneurons (MNs) and endothelial cells (ECs) of ischemic SCs, and that global miR-155 deletion decreases the percentage of paraplegia by 37.4% at 48-h post-ACC. Here, we investigated the cell-specific contribution of miR-155 in choline acetyltransferase-positive (ChAT+) neurons (that include all MNs of the SC) and ECs to SC injury after ACC. Mice lacking miR-155 in ChAT+ neurons (MN-miR-155-KO mice) developed 24.6% less paraplegia than control mice at 48-h post-ACC. In contrast, mice lacking miR-155 in ECs (ECs-miR-155-KO mice) experienced the same percentage of paraplegia as control mice, despite presenting smaller central cord edema. Unexpectedly, mice overexpressing miR-155 in ChAT+ neurons were less likely than control mice to develop early paraplegia during the first day post-ACC, however they reached the same percentage of paraplegia at 48-h. In addition, all mice overexpressing miR-155 in ECs (ECs-miR-155-KI mice) were paraplegic at 48-h post-ACC. Altogether, our results suggest that miR-155 activity in ChAT+ neurons protects the SC against ischemic injury during the first day post-ACC before becoming deleterious during the second day, which indicates that early and late paraplegias arise from different molecular malfunctions. These results point to the need to develop specific protective therapeutics aimed at inhibiting both the early and late deleterious events after open repair surgery of aortic aneurisms.

15.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 17.
Article in English | MEDLINE | ID: mdl-36559029

ABSTRACT

Aromatase Inhibitors (AIs) block estrogen production and improve survival in patients with hormone-receptor-positive breast cancer. However, half of patients develop aromatase-inhibitor-induced arthralgia (AIIA), which is characterized by inflammation of the joints and the surrounding musculoskeletal tissue. To create a platform for future interventional strategies, our objective was to characterize a novel animal model of AIIA. Female BALB/C-Tg(NFκB-RE-luc)-Xen mice, which have a firefly luciferase NFκB reporter gene, were oophorectomized and treated with an AI (letrozole). Bioluminescent imaging showed significantly enhanced NFκB activation with AI treatment in the hind limbs. Moreover, an analysis of the knee joints and legs via MRI showed enhanced signal detection in the joint space and the surrounding tissue. Surprisingly, the responses observed with AI treatment were independent of oophorectomy, indicating that inflammation is not mediated by physiological estrogen levels. Histopathological and pro-inflammatory cytokine analyses further demonstrated the same trend, as tenosynovitis and musculoskeletal infiltrates were detected in all mice receiving AI, and serum cytokines were significantly upregulated. Human PBMCs treated with letrozole/estrogen combinations did not demonstrate an AI-specific gene expression pattern, suggesting AIIA-mediated pathogenesis through other cell types. Collectively, these data identify an AI-induced stimulation of disease pathology and suggest that AIIA pathogenesis may not be mediated by estrogen deficiency, as previously hypothesized.

16.
Front Neurol ; 12: 740298, 2021.
Article in English | MEDLINE | ID: mdl-34917012

ABSTRACT

Introduction: Spontaneously hypertensive stroke-prone rats (SHRSP) are used to model clinically relevant aspects of human cerebral small vessel disease (CSVD). To decipher and understand the underlying disease dynamics, assessment of the temporal progression of CSVD histopathological and neuroimaging correlates is essential. Materials and Methods: Eighty age-matched male SHRSP and control Wistar Kyoto rats (WKY) were randomly divided into four groups that were aged until 7, 16, 24 and 32 weeks. Sensorimotor testing was performed weekly. Brain MRI was acquired at each study time point followed by histological analyses of the brain. Results: Compared to WKY controls, the SHRSP showed significantly higher prevalence of small subcortical hyperintensities on T2w imaging that progressed in size and frequency with aging. Volumetric analysis revealed smaller intracranial and white matter volumes on brain MRI in SHRSP compared to age-matched WKY. Diffusion tensor imaging (DTI) showed significantly higher mean diffusivity in the corpus callosum and external capsule in WKY compared to SHRSP. The SHRSP displayed signs of motor restlessness compared to WKY represented by hyperactivity in sensorimotor testing at the beginning of the experiment which decreased with age. Distinct pathological hallmarks of CSVD, such as enlarged perivascular spaces, microbleeds/red blood cell extravasation, hemosiderin deposits, and lipohyalinosis/vascular wall thickening progressively accumulated with age in SHRSP. Conclusions: Four stages of CSVD severity in SHRSP are described at the study time points. In addition, we find that quantitative analyses of brain MRI enable identification of in vivo markers of CSVD that can serve as endpoints for interventional testing in therapeutic studies.

17.
J Clin Invest ; 131(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33586683

ABSTRACT

The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.


Subject(s)
Adipose Tissue/enzymology , Alcohol Dehydrogenase/metabolism , Mitochondria, Heart/metabolism , Obesity/enzymology , Pericardium/enzymology , Adipose Tissue/pathology , Alcohol Dehydrogenase/deficiency , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Metabolomics , Mice , Mice, Knockout , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Obesity/genetics , Obesity/pathology , Pericardium/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Retinaldehyde/metabolism , Signal Transduction/genetics
18.
Exp Neurol ; 346: 113853, 2021 12.
Article in English | MEDLINE | ID: mdl-34464653

ABSTRACT

Experience-dependent white matter plasticity offers new potential for rehabilitation-induced recovery after neurotrauma. This first-in-human translational experiment combined myelin water imaging in humans and genetic fate-mapping of oligodendrocyte lineage cells in mice to investigate whether downhill locomotor rehabilitation that emphasizes eccentric muscle actions promotes white matter plasticity and recovery in chronic, incomplete spinal cord injury (SCI). In humans, of 20 individuals with SCI that enrolled, four passed the imaging screen and had myelin water imaging before and after a 12-week (3 times/week) downhill locomotor treadmill training program (SCI + DH). One individual was excluded for imaging artifacts. Uninjured control participants (n = 7) had two myelin water imaging sessions within the same day. Changes in myelin water fraction (MWF), a histopathologically-validated myelin biomarker, were analyzed in a priori motor learning and non-motor learning brain regions and the cervical spinal cord using statistical approaches appropriate for small sample sizes. PDGFRα-CreERT2:mT/mG mice, that express green fluorescent protein on oligodendrocyte precursor cells and subsequent newly-differentiated oligodendrocytes upon tamoxifen-induced recombination, were either naive (n = 6) or received a moderate (75 kilodyne), contusive SCI at T9 and were randomized to downhill training (n = 6) or unexercised groups (n = 6). We initiated recombination 29 days post-injury, seven days prior to downhill training. Mice underwent two weeks of daily downhill training on the same 10% decline grade used in humans. Between-group comparison of functional (motor and sensory) and histological (oligodendrogenesis, oligodendroglial/axon interaction, paranodal structure) outcomes occurred post-training. In humans with SCI, downhill training increased MWF in brain motor learning regions (postcentral, precuneus) and mixed motor and sensory tracts of the ventral cervical spinal cord compared to control participants (P < 0.05). In mice with thoracic SCI, downhill training induced oligodendrogenesis in cervical dorsal and lateral white matter, increased axon-oligodendroglial interactions, and normalized paranodal structure in dorsal column sensory tracts (P < 0.05). Downhill training improved sensorimotor recovery in mice by normalizing hip and knee motor control and reducing hyperalgesia, both of which were associated with new oligodendrocytes in the cervical dorsal columns (P < 0.05). Our findings indicate that eccentric-focused, downhill rehabilitation promotes white matter plasticity and improved function in chronic SCI, likely via oligodendrogenesis in nervous system regions activated by the training paradigm. Together, these data reveal an exciting role for eccentric training in white matter plasticity and sensorimotor recovery after SCI.


Subject(s)
Neurological Rehabilitation/methods , Neuronal Plasticity/physiology , Psychomotor Performance/physiology , Recovery of Function/physiology , Spinal Cord Injuries/rehabilitation , White Matter/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Chronic Disease , Exercise Test/methods , Female , Humans , Magnetic Resonance Imaging , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Spinal Cord Injuries/diagnostic imaging , Spinal Cord Injuries/physiopathology , White Matter/diagnostic imaging , Young Adult
19.
Biomed Microdevices ; 12(3): 381-7, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20058084

ABSTRACT

Lithium naphthalocyanine (LiNc) is a crystalline material that has significant potential as a probe for EPR (electron paramagnetic resonance)-based biological oximetry (Pandian et al. J. Mater. Chem. 19:4138-4147, 2009a). However, implantation of LiNc crystals in tissues in raw or neat form is undesirable since dispersion of crystals in tissue may lead to loss of EPR signal, while also exacerbating biocompatibility concerns due to tissue exposure. To overcome these concerns, we have encapsulated LiNc crystals in an oxygen-permeable polymer, Teflon AF 2400 (TAF). Fabrication of TAF films incorporating LiNc particles (denoted as LiNc:TAF chip) was carried out using solvent-evaporation techniques. The EPR linewidth of LiNc:TAF chip was linearly dependent on oxygen-partial pressure (pO(2)) and did not change significantly relative to neat LiNc crystals. LiNc:TAF chip responded to changes in pO(2) reproducibly, enabling dynamic measurements of oxygenation in real time. The LiNc:TAF chips were stable in tissues for more than 2 months and were capable of providing repeated measurements of tissue oxygenation for extended periods of time. The results demonstrated that the newly fabricated, highly oxygen-sensitive LiNc:TAF chip will enhance the applicability of EPR oximetry for long-term and clinical applications.


Subject(s)
Electron Spin Resonance Spectroscopy/instrumentation , Oximetry/instrumentation , Oxygen/analysis , Polytetrafluoroethylene/chemistry , Porphyrins/chemistry , Prostheses and Implants , Animals , Crystallization/methods , Equipment Design , Equipment Failure Analysis , Female , Mice , Mice, Inbred C3H , Oxygen/chemistry
20.
J Vis Exp ; (160)2020 06 07.
Article in English | MEDLINE | ID: mdl-32568247

ABSTRACT

Metastatic spread of cancer is an unfortunate consequence of disease progression, aggressive cancer subtypes, and/or late diagnosis. Brain metastases are particularly devastating, difficult to treat, and confer a poor prognosis. While the precise incidence of brain metastases in the United States remains hard to estimate, it is likely to increase as extracranial therapies continue to become more efficacious in treating cancer. Thus, it is necessary to identify and develop novel therapeutic approaches to treat metastasis at this site. To this end, intracranial injection of cancer cells has become a well-established method in which to model brain metastasis. Previously, the inability to directly measure tumor growth has been a technical hindrance to this model; however, increasing availability and quality of small animal imaging modalities, such as magnetic resonance imaging (MRI), are vastly improving the ability to monitor tumor growth over time and infer changes within the brain during the experimental period. Herein, intracranial injection of murine mammary tumor cells into immunocompetent mice followed by MRI is demonstrated. The presented injection approach utilizes isoflurane anesthesia and a stereotactic setup with a digitally controlled, automated drill and needle injection to enhance precision, and reduce technical error. MRI is measured over time using a 9.4 Tesla instrument in The Ohio State University James Comprehensive Cancer Center Small Animal Imaging Shared Resource. Tumor volume measurements are demonstrated at each time point through use of ImageJ. Overall, this intracranial injection approach allows for precise injection, day-to-day monitoring, and accurate tumor volume measurements, which combined greatly enhance the utility of this model system to test novel hypotheses on the drivers of brain metastases.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Injections , Magnetic Resonance Imaging , Anesthesia , Animals , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Breast Neoplasms/pathology , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Stereotaxic Techniques , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL