Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Neurosci ; 44(17)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38438258

ABSTRACT

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Subject(s)
Acetylcholine , Cholecystokinin , Mice, Inbred C57BL , Theta Rhythm , Theta Rhythm/drug effects , Theta Rhythm/physiology , Animals , Male , Mice , Female , Acetylcholine/pharmacology , Acetylcholine/metabolism , Cholecystokinin/pharmacology , Cholecystokinin/metabolism , Interneurons/physiology , Interneurons/drug effects , Somatostatin/metabolism , Somatostatin/pharmacology , Amygdala/physiology , Amygdala/drug effects , Basolateral Nuclear Complex/physiology , Basolateral Nuclear Complex/drug effects , Nerve Net/physiology , Nerve Net/drug effects , Receptor, Muscarinic M3/physiology , Receptor, Muscarinic M3/metabolism , Parvalbumins/metabolism
2.
J Neurosci ; 43(5): 722-735, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36535767

ABSTRACT

The amygdalar anterior basolateral nucleus (BLa) plays a vital role in emotional behaviors. This region receives dense cholinergic projections from basal forebrain which are critical in regulating neuronal activity in BLa. Cholinergic signaling in BLa has also been shown to modulate afferent glutamatergic inputs to this region. However, these studies, which have used cholinergic agonists or prolonged optogenetic stimulation of cholinergic fibers, may not reflect the effect of physiological acetylcholine release in the BLa. To better understand these effects of acetylcholine, we have used electrophysiology and optogenetics in male and female mouse brain slices to examine cholinergic regulation of afferent BLa input from cortex and midline thalamic nuclei. Phasic ACh release evoked by single pulse stimulation of cholinergic terminals had a biphasic effect on transmission at cortical input, producing rapid nicotinic receptor-mediated facilitation followed by slower mAChR-mediated depression. In contrast, at this same input, sustained ACh elevation through application of the cholinesterase inhibitor physostigmine suppressed glutamatergic transmission through mAChRs only. This suppression was not observed at midline thalamic nuclei inputs to BLa. In agreement with this pathway specificity, the mAChR agonist, muscarine more potently suppressed transmission at inputs from prelimbic cortex than thalamus. Muscarinic inhibition at prelimbic cortex input required presynaptic M4 mAChRs, while at thalamic input it depended on M3 mAChR-mediated stimulation of retrograde endocannabinoid signaling. Muscarinic inhibition at both pathways was frequency-dependent, allowing only high-frequency activity to pass. These findings demonstrate complex cholinergic regulation of afferent input to BLa that is pathway-specific and frequency-dependent.SIGNIFICANCE STATEMENT Cholinergic modulation of the basolateral amygdala regulates formation of emotional memories, but the underlying mechanisms are not well understood. Here, we show, using mouse brain slices, that ACh differentially regulates afferent transmission to the BLa from cortex and midline thalamic nuclei. Fast, phasic ACh release from a single optical stimulation biphasically regulates glutamatergic transmission at cortical inputs through nicotinic and muscarinic receptors, suggesting that cholinergic neuromodulation can serve precise, computational roles in the BLa. In contrast, sustained ACh elevation regulates cortical input through muscarinic receptors only. This muscarinic regulation is pathway-specific with cortical input inhibited more strongly than midline thalamic nuclei input. Specific targeting of these cholinergic receptors may thus provide a therapeutic strategy to bias amygdalar processing and regulate emotional memory.


Subject(s)
Acetylcholine , Basolateral Nuclear Complex , Mice , Animals , Male , Female , Acetylcholine/metabolism , Basolateral Nuclear Complex/metabolism , Receptors, Cholinergic/metabolism , Thalamus/physiology , Cholinergic Agents/pharmacology , Receptors, Muscarinic/metabolism , Synaptic Transmission/physiology
3.
Proc Natl Acad Sci U S A ; 116(42): 21176-21184, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31575739

ABSTRACT

As the inhibitory γ-aminobutyric acid-ergic (GABAergic) transmission has a pivotal role in the central nervous system (CNS) and defective forms of its synapses are associated with serious neurological disorders, numerous versions of caged GABA and, more recently, photoswitchable ligands have been developed to investigate such transmission. While the complementary nature of these probes is evident, the mechanisms by which the GABA receptors can be photocontrolled have not been fully exploited. In fact, the ultimate need for specificity is critical for the proper synaptic exploration. No caged allosteric modulators of the GABAA receptor have been reported so far; to introduce such an investigational approach, we exploited the structural motifs of the benzodiazepinic scaffold to develop a photocaged version of diazepam (CD) that was tested on basolateral amygdala (BLa) pyramidal cells in mouse brain slices. CD is devoid of any intrinsic activity toward the GABAA receptor before irradiation. Importantly, CD is a photoreleasable GABAA receptor-positive allosteric modulator that offers a different probing mechanism compared to caged GABA and photoswitchable ligands. CD potentiates the inhibitory signaling by prolonging the decay time of postsynaptic GABAergic currents upon photoactivation. Additionally, no effect on presynaptic GABA release was recorded. We developed a photochemical technology to individually study the GABAA receptor, which specifically expands the toolbox available to study GABAergic synapses.


Subject(s)
Amygdala/drug effects , Diazepam/pharmacology , Receptors, GABA-A/metabolism , Synapses/metabolism , Amygdala/metabolism , Animals , Mice , Mice, Inbred C57BL , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Synaptic Potentials/drug effects , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/metabolism
4.
J Neurol Sci ; 358(1-2): 107-12, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26341152

ABSTRACT

We are developing a novel intradural spinal cord (SC) stimulator designed to improve the treatment of intractable pain and the sequelae of SC injury. In-vivo ovine models of neuropathic pain and moderate SC injury are being implemented for pre-clinical evaluations of this device, to be carried out via gait analysis before and after induction of the relevant condition. We extend previous studies on other quadrupeds to extract the three-dimensional kinematics of the limbs over the gait cycle of sheep walking on a treadmill. Quantitative measures of thoracic and pelvic limb movements were obtained from 17 animals. We calculated the total-error values to define the analytical performance of our motion capture system for these kinematic variables. The post- vs. pre-injury time delay between contralateral thoracic and pelvic-limb steps for normal and SC-injured sheep increased by ~24s over 100 steps. The pelvic limb hoof velocity during swing phase decreased, while range of pelvic hoof elevation and distance between lateral pelvic hoof placements increased after SC injury. The kinematics measures in a single SC-injured sheep can be objectively defined as changed from the corresponding pre-injury values, implying utility of this method to assess new neuromodulation strategies for specific deficits exhibited by an individual.


Subject(s)
Exercise Test/methods , Gait/physiology , Sheep/physiology , Spinal Cord Injuries/diagnosis , Walking/physiology , Animals , Biomechanical Phenomena , Disease Models, Animal , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL