Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Med Chem Res ; 31(2): 274-283, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35340752

ABSTRACT

Compound 1c, 5-chloro-2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)ethyl)-2,3-dihydro-1H-inden-1-one was previously reported from our laboratory showing high affinity binding to the 5-HT7 receptor (Ki = 0.5 nM). However, compound 1c racemizes readily upon enantiomeric separation. To prevent racemization, we have redesigned and synthesized methyl and carboxyethyl analogs, compounds 2 and 3 respectively, whose binding affinities were similar to those of compound 1c. Compounds 2 and 3 cannot undergo racemization since tautomerism was no longer possible and thus, compound 2 was selected for enantiomeric separation and further evaluation. Upon enantiomeric separation, the levorotatory enantiomer, (-)2 or 2a demonstrated a higher affinity (Ki = 1.2 nM) than the (+)2 or 2b enantiomer (Ki = 93 nM) and a ß-arrestin biased functional selectivity for the 5-HT7 receptor. Although 2a showed about 8 times less activity than 5-HT in the Gs pathway, it showed over 31 times higher activity than 5-HT in the ß-arrestin pathway. This constitutes a significant ß-arrestin pathway preference and shows 2a to be more potent and more efficacious than the recently published ß-arrestin biased 3-(4-chlorophenyl)-1,4,5,6,7,8-hexahydropyrazolo[3,4-d]azepine, the N-debenzylated analog of JNJ18038683 (Compound 7).

2.
Bioorg Med Chem ; 30: 115943, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33338898

ABSTRACT

Dopamine (DA) and serotonin (5-HT) receptors are prime targets for the development of antipsychotics. The specific role of each receptor subtype to the pharmacological effects of antipsychotic drugs remains unclear. Understanding the relationship between antipsychotic drugs and their binding affinities at DA and 5-HT receptor subtypes is very important for antipsychotic drug discovery and could lead to new drugs with enhanced efficacies. We have previously disclosed SYA16263 (5) as an interesting compound with moderate radioligand binding affinity at the D2 & D3 receptors (Ki = 124 nM & 86 nM respectively) and high binding affinities towards D4 and 5-HT1A receptors (Ki = 3.5 nM & 1.1 nM respectively). Furthermore, we have demonstrated SYA16263 (5) is functionally selective and produces antipsychotic-like behavior but without inducing catalepsy in rats. Based on its pharmacological profile, we selected SYA16263 (5) to study its structure-affinity relationship with a view to obtaining new analogs that display receptor subtype selectivity. In this study, we present the synthesis of structurally modified SYA16263 (5) analogs and their receptor binding affinities at the DA and 5-HT receptor subtypes associated with antipsychotic action. Furthermore, we have identified compound 21 with no significant binding affinity at the D2 receptor subtype but with moderate binding affinity at the D3 and D4 receptors subtypes. However, because 21 is able to demonstrate antipsychotic-like activity in a preliminary test, using the reversal of apomorphine-induced climbing behavior experiment in mice with SYA16263 and haloperidol as positive controls, we question the essential need of the D2 receptor subtype in reversing apomorphine-induced climbing behavior.


Subject(s)
Antipsychotic Agents/pharmacology , Apomorphine/antagonists & inhibitors , Behavior, Animal/drug effects , Dopamine D2 Receptor Antagonists/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Receptors, Dopamine D2/metabolism , Animals , Antipsychotic Agents/chemical synthesis , Antipsychotic Agents/chemistry , Apomorphine/pharmacology , Dopamine D2 Receptor Antagonists/chemical synthesis , Dopamine D2 Receptor Antagonists/chemistry , Dose-Response Relationship, Drug , Male , Mice , Molecular Structure , Piperazines/chemical synthesis , Piperazines/chemistry , Pyridines/chemical synthesis , Pyridines/chemistry , Structure-Activity Relationship
3.
Biomed Chromatogr ; 33(9): e4565, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31032988

ABSTRACT

In previous structure-activity relationship studies to identify new and selective 5-HT7 receptor (5-HT7 R) ligands, we identified the chiral compound, 5-chloro-2-{2-[3,4-dihydroisoquinoline-2(1H)-yl]ethyl}-2-methyl-2,3-dihydro-1H-inden-1-one (SYA 40247), with high-affinity binding to the 5-HT7 R. Thus, it was of interest to separate the enantiomers in order to evaluate their affinity at the 5-HT7 R. To achieve this separation, a normal-phase analytical method using HPLC-PDA and a 4.6 × 250 mm Chiralpak AD-H column was developed. Optimized isocratic conditions of 1.00 mL/min 95:5:0.1 v/v/v hexane-ethanol-diethylamine and a 254 nm analysis wavelength yielded a 6.07 min baseline separation. The method was scaled up to a 10 × 250 mm Chiralpak AD-H column, allowing 3 mg of racemate to be separated with a single injection, and 6 mg for an overlapping double injection in the same run. The separated enantiomers were reinjected into the analytical HPLC system, peak identities confirmed by retention time and PDA UV spectra, and the enantiomeric purities determined to be 100% for peak 1 and 100% for peak 2. A Jasco P-1020 polarimeter was used to determine the specific rotation [α] of the enantiomers of peaks 1 and 2, which were -86.2 and +93.3 (deg mL)/(g dm) respectively. No racemization was observed, and the enantiomeric purity remained at 100% for each peak.


Subject(s)
Amylose/analogs & derivatives , Chromatography, High Pressure Liquid/methods , Indenes/chemistry , Indenes/isolation & purification , Isoquinolines/chemistry , Isoquinolines/isolation & purification , Phenylcarbamates/chemistry , Amylose/chemistry , Isoquinolines/analysis , Ligands , Receptors, Serotonin/chemistry , Receptors, Serotonin/metabolism , Stereoisomerism
4.
Bioorg Med Chem ; 24(22): 5730-5740, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27717652

ABSTRACT

Diseases of the CNS are often complex and involve multiple receptor systems and thus, the treatment options for these diseases must focus on targeting the multiple receptors implicated in the various disorders. Schizophrenia and depression are examples of such diseases and their pharmacotherapy thus depends on agents which target multiple receptors including the dopamine, serotonin and even cholinergic receptors at the same time. In our previous campaign to find multi-receptor ligands, we have identified the benzothiazole 1a as an initial lead molecule. In the current work, we have expanded the structure affinity relationship (SAFIR) of 1a resulting in the identification of a partially restrained butyrophenone 3j as a potent and selective dual 5-HT1A and 5-HT7 receptor ligand. It is expected that compound 3j may serve as a new lead for further development in our search for newer and novel ligands with the potential to treat diseases of CNS origin.


Subject(s)
Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin/metabolism , Tetrahydroisoquinolines/pharmacology , Binding Sites/drug effects , Dose-Response Relationship, Drug , Humans , Ligands , Molecular Structure , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/chemistry
5.
Bioorg Med Chem ; 24(16): 3671-9, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27364609

ABSTRACT

Several known D2 pharmacophores have been explored as templates for identifying ligands with multiple binding affinities at dopamine and serotonin receptors considered as clinically relevant receptors in the treatment of neuropsychiatric diseases. This approach has resulted in the identification of ligands that target multiple CNS receptors while avoiding others associated with deleterious effects. In particular, compounds 11, 15 and 22 may have potential for further development as antipsychotic agents as they favorably interact with the clinically relevant receptors including D2R, 5-HT1AR, and 5-HT7R. We have also identified the pair of compounds 11 and 10 as high affinity D2R ligands with and without SERT binding affinities, respectively. These differential binding profiles endow the pair with the potential for evaluating SERT contributions to antipsychotic drug activity in animal behavioral models. In addition, compound 11 has no significant affinity for 5-HT2CR and binds only moderately to the H1R, suggesting it may not induce weight gain or sedation when used clinically. Taken together, compound 11 displays an interesting pharmacological profile that necessitates the evaluation of its functional and in vivo effects in animal models which are currently ongoing.


Subject(s)
Receptors, Dopamine D2/metabolism , Animals , Dopamine Agents/metabolism , Humans , Ligands , Proton Magnetic Resonance Spectroscopy
6.
Bioorg Med Chem ; 24(16): 3464-71, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27312422

ABSTRACT

5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.


Subject(s)
Isoquinolines/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Receptors, Serotonin/metabolism , Carbon-13 Magnetic Resonance Spectroscopy , Ligands , Proton Magnetic Resonance Spectroscopy
7.
ACS Omega ; 8(24): 21736-21744, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360419

ABSTRACT

We have previously identified 5-chloro-2-methyl-2-(3-(4-(pyridin-2-yl)piperazin-1-yl)propyl)-2,3-dihydro-1H-inden-1-one (SYA0340) as a dual 5-HT1A and 5-HT7 receptor ligand, and we posited such ligands might find utility in the treatment of various CNS related illnesses including cognitive and anxiolytic impairments. However, SYA0340 has a chiral center and its enantiomers may confound the readouts for their functional characteristics. Thus, in this study, we resynthesized SYA0340, separated the enantiomers, identified the absolute configurations, and evaluated their binding affinities and functional characteristics at both the 5-HT1A and 5-HT7A receptors. The results of this study show that the (+)-SYA0340-P1 [specific rotation [α] = +18.4 (deg.mL)/(g.dm)] has a binding affinity constant, Ki = 1.73 ± 0.55 nM at 5-HT1AR and Ki = 2.20 ± 0.33 nM at 5-HT7AR and (-)-SYA0340-P2 [specific rotation [α] = -18.2 (deg.mL)/(g.dm)] has Ki = 1.06 ± 0.32 nM (5-HT1AR) and 4.7 ± 1.1 nM (5-HT7AR). Using X-ray crystallographic techniques, the absolute configuration of the P2 isomer was identified as the S-enantiomer and, therefore, the P1 isomer as the R-enantiomer. Functionally, both SYA0340-P1 (EC50 = 1.12 ± 0.41 nM; Emax = 94.6 ± 3.1%) and SYA0340-P2 (EC50 = 2.21 ± 0.59 nM; Emax = 96.8 ± 5.1%) display similar agonist properties at the 5-HT1AR while both enantiomers display antagonist properties at the 5-HT7AR with P1 (IC50 = 32.1 ± 9.2 nM) displaying over 8 times greater potency as P2 (IC50 = 277 ± 46 nM). Thus, based on the functional evaluation results, SYA0340-P1 is considered as the eutomer of the pair of enantiomers of SYA0340. It is expected that these enantiomers will serve as new pharmacological probes for the 5-HT1A and 5-HT7A receptors.

8.
Bioorg Med Chem ; 19(1): 458-70, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21134759

ABSTRACT

Substitution around 5-methyl benzothieno[3,2-b]quinolinium (2) ring system was explored in order to identify positions of substitution that could improve its antifungal profile. The 3-methoxy (10b) was active against C. albicans, C. neoformans, and A. fumigatus and the 4-chloro (10f) analog showed moderate increases in anti-cryptococcal and anti-aspergillus activities. The effectiveness of 10b and 10f were validated in murine models of candidiasis and cryptococcosis, respectively. The efficacy of 10f in reducing brain cryptococcal infection and its observation in the brain of mice injected with this quaternary compound confirm the capacity of these compounds to cross the blood-brain barrier of mice. Overall, several of the chloro and methoxy substituted compounds showed significant improvements in activity against A. fumigatus, the fungal pathogen prevalent in patients receiving organ transplant. Opening the benzothiophene ring of 2 to form 1-(5-cyclohexylpentyl)-3-(phenylthio)quinolinium compound (3) resulted in the identification of several novel compounds with over 50-fold increases in potency (cf. 2) while retaining low cytotoxicities. Thus, compound 3 constitutes a new scaffold for development of drugs against opportunistic infections.


Subject(s)
Fungi/drug effects , Quinolines/chemical synthesis , Quinolines/pharmacology , Animals , Blood-Brain Barrier , Candidiasis/drug therapy , Chromatography, High Pressure Liquid , Disease Models, Animal , In Vitro Techniques , Magnetic Resonance Spectroscopy , Maximum Tolerated Dose , Mice , Microbial Sensitivity Tests , Quinolines/pharmacokinetics , Quinolines/therapeutic use
9.
Pharmacol Biochem Behav ; 179: 55-62, 2019 04.
Article in English | MEDLINE | ID: mdl-30768942

ABSTRACT

SYA16263 exhibited moderate radioligand binding affinity at the D2 receptor and produced inhibition of apomorphine-induced climbing behavior in mice with an ED50 value of 3.88 mg/kg IP, predicting potential antipsychotic effects in humans. Analysis of plasma and brains from rats injected IP with SYA16263 over the course of 24 h revealed a log [brain]/[plasma] (log BB) at Cmax observed equal to 1.08, indicating that SYA16263 enters the brain and is predicted to cross the blood brain barrier (BBB) readily. When tested in animal behavior tests for catalepsy, SYA16263 did not produce catalepsy at doses up to 19 times the apomorphine ED50 value predicting little or no extra-pyramidal (EPS) side effects in humans. This is similar to aripiprazole, which is associated with a low incidence of EPS in humans, but unlike haloperidol which is known to cause severe EPS in humans. Functional activities for SYA16263 show that it acts as a D2 agonist at both the Gi and ß-arrestin pathways, similar to, but better than aripiprazole, which could account for the absence of the catalepsy observed. Taken together, the receptor binding profile, the functional status, the animal behavioral tests and the log BB value, all provide evidence for further pre-clinical testing of SYA16263 as a potential antipsychotic agent with an interesting profile and a unique mechanism of action resulting in no EPS even up to 19 times the ED50 value.


Subject(s)
Antipsychotic Agents/pharmacology , Piperazines/pharmacology , Pyridines/pharmacology , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/therapeutic use , Brain/metabolism , Catalepsy/chemically induced , Disease Models, Animal , Male , Mice , Piperazines/pharmacokinetics , Piperazines/therapeutic use , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Schizophrenia/drug therapy , Tissue Distribution
10.
Mini Rev Med Chem ; 16(7): 555-78, 2016.
Article in English | MEDLINE | ID: mdl-26776224

ABSTRACT

Pathogenic fungi are a major causative group for opportunistic infections (OIs). AIDS patients and other immunocompromised individuals are at risk for OIs, which if not treated appropriately, contribute to the mortality associated with their conditions. Several studies have indicated that the majority of HIV-positive patients contract fungal infections throughout the course of their disease. Similar observations have been made regarding the increased frequency of bone marrow and organ transplants, the use of antineoplastic agents, the excessive use of antibiotics, and the prolonged use of corticosteroids among others. In addition, several pathogenic fungi have developed resistance to current drugs. Together these have conspired to spur a need for developing new treatment options for OIs. To aid this effort, this article reviews the biological targets of current and emerging drugs and agents that act through these targets for the treatment of opportunistic fungal infections.


Subject(s)
Antifungal Agents/pharmacology , Fungi/drug effects , Fungi/metabolism , Molecular Targeted Therapy , Antifungal Agents/chemistry , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/metabolism , Opportunistic Infections/drug therapy , Opportunistic Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL