Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Country/Region as subject
Publication year range
1.
BMC Infect Dis ; 22(1): 121, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35120441

ABSTRACT

BACKGROUND: A new more highly sensitive rapid diagnostic test (HS-RDT) for Plasmodium falciparum malaria (Alere™/Abbott Malaria Ag P.f RDT [05FK140], now called NxTek™ Eliminate Malaria Ag Pf) was launched in 2017. The test has already been used in many research studies in a wide range of geographies and use cases. METHODS: In this study, we collate all published and available unpublished studies that use the HS-RDT and assess its performance in (i) prevalence surveys, (ii) clinical diagnosis, (iii) screening pregnant women, and (iv) active case detection. Two individual-level data sets from asymptomatic populations are used to fit logistic regression models to estimate the probability of HS-RDT positivity based on histidine-rich protein 2 (HRP2) concentration and parasite density. The performance of the HS-RDT in prevalence surveys is estimated by calculating the sensitivity and positive proportion in comparison to polymerase chain reaction (PCR) and conventional malaria RDTs. RESULTS: We find that across 18 studies, in prevalence surveys, the mean sensitivity of the HS-RDT is estimated to be 56.1% (95% confidence interval [CI] 46.9-65.4%) compared to 44.3% (95% CI 32.6-56.0%) for a conventional RDT (co-RDT) when using nucleic acid amplification techniques as the reference standard. In studies where prevalence was estimated using both the HS-RDT and a co-RDT, we found that prevalence was on average 46% higher using a HS-RDT compared to a co-RDT. For use in clinical diagnosis and screening pregnant women, the HS-RDT was not significantly more sensitive than a co-RDT. CONCLUSIONS: Overall, the evidence presented here suggests that the HS-RDT is more sensitive in asymptomatic populations and could provide a marginal improvement in clinical diagnosis and screening pregnant women. Although the HS-RDT has limited temperature stability and shelf-life claims compared to co-RDTs, there is no evidence to suggest, given this test has the same cost as current RDTs, it would have any negative impacts in terms of malaria misdiagnosis if it were widely used in all four population groups explored here.


Subject(s)
Malaria, Falciparum , Malaria , Antigens, Protozoan , Cross-Sectional Studies , Diagnostic Tests, Routine , Female , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Pregnancy , Protozoan Proteins , Sensitivity and Specificity
2.
MMWR Morb Mortal Wkly Rep ; 70(8): 280-282, 2021 Feb 26.
Article in English | MEDLINE | ID: mdl-33630820

ABSTRACT

The first laboratory-confirmed cases of coronavirus disease 2019 (COVID-19), the illness caused by SARS-CoV-2, in Zambia were detected in March 2020 (1). Beginning in July, the number of confirmed cases began to increase rapidly, first peaking during July-August, and then declining in September and October (Figure). After 3 months of relatively low case counts, COVID-19 cases began rapidly rising throughout the country in mid-December. On December 18, 2020, South Africa published the genome of a SARS-CoV-2 variant strain with several mutations that affect the spike protein (2). The variant included a mutation (N501Y) associated with increased transmissibility.†,§ SARS-CoV-2 lineages with this mutation have rapidly expanded geographically.¶,** The variant strain (PANGO [Phylogenetic Assignment of Named Global Outbreak] lineage B.1.351††) was first detected in the Eastern Cape Province of South Africa from specimens collected in early August, spread within South Africa, and appears to have displaced the majority of other SARS-CoV-2 lineages circulating in that country (2). As of January 10, 2021, eight countries had reported cases with the B.1.351 variant. In Zambia, the average number of daily confirmed COVID-19 cases increased 16-fold, from 44 cases during December 1-10 to 700 during January 1-10, after detection of the B.1.351 variant in specimens collected during December 16-23. Zambia is a southern African country that shares substantial commerce and tourism linkages with South Africa, which might have contributed to the transmission of the B.1.351 variant between the two countries.


Subject(s)
COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2/genetics , Adult , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Female , Humans , Male , Middle Aged , SARS-CoV-2/isolation & purification , Zambia/epidemiology
3.
Malar J ; 20(1): 386, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34583692

ABSTRACT

BACKGROUND: Zambia continues to advance on the path to elimination with significant reductions in malaria morbidity and mortality. Crucial components that have contributed to progress thus far and are necessary for achieving the national malaria elimination goals include properly identifying and treating all malaria cases through accurate diagnosis. This study sought to compare and assess the diagnostic performance of Rapid Diagnostic Tests (RDT) and Light Microscopy (LM) with photo-induced electron transfer polymerase chain reaction (PET-PCR) as the gold standard using 2018 Malaria Indicator Survey (MIS) data across Zambia to better understand diagnostic accuracy metrics and how these vary across a transmission gradient. METHODS: Cross-sectional samples collected in a nationally representative survey from 7 provinces in Zambia were tested for the presence of malaria parasites by light microscopy (LM), rapid diagnostic test (RDT) and the gold standard PET-PCR. Diagnostic performance was assessed including sensitivity, specificity, negative- and positive-predictive values across a wide malaria transmission spectrum. Diagnostic accuracy metrics were measured, and statistically significant differences were calculated between test methods for different outcome variables. RESULTS: From the individuals included in the MIS, the overall prevalence of Plasmodium falciparum malaria was 32.9% by RDT, 19.4% by LM, and 23.2% by PET-PCR. Herein, RDT and LM diagnostic performance was compared against gold standard PET-PCR with LM displaying a higher diagnostic accuracy than RDTs (91.3% vs. 84.6% respectively) across the transmission spectrum in Zambia. However, the performance of both diagnostics was significantly reduced in low parasitaemia samples. Consistent with previous studies, RDT diagnostic accuracy was predominantly affected by a high rate of false positives. CONCLUSIONS: RDTs and LM both perform well across a range of transmission intensities within their respective target applications, i.e., in the community, for the former, where ease of use and speed of result is critical, and at the health facility, for the latter, where accuracy is prioritized. However, the performance of both diagnostic methods is adversely affected by low parasitaemia infections. As Zambia moves towards elimination more sensitive tools may be required to identify the last cases.


Subject(s)
Diagnostic Tests, Routine/statistics & numerical data , Malaria, Falciparum/epidemiology , Microscopy/statistics & numerical data , Plasmodium falciparum/isolation & purification , Polymerase Chain Reaction/statistics & numerical data , Child , Child, Preschool , Cross-Sectional Studies , Humans , Infant , Infant, Newborn , Malaria, Falciparum/parasitology , Parasitemia/epidemiology , Parasitemia/parasitology , Predictive Value of Tests , Prevalence , Sensitivity and Specificity , Zambia/epidemiology
4.
Malar J ; 19(1): 20, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31941493

ABSTRACT

BACKGROUND: Zambia has set itself the ambitious target of eliminating malaria by 2021. To continue tracking transmission to zero, new interventions, tools and approaches are required. METHODS: Urban reactive case detection (RCD) was performed in Lusaka city from 2011 to 2015 to better understand the location and drivers of malaria transmission. Briefly, index cases were followed to their home and all consenting individuals living in the index house and nine proximal houses were tested with a malaria rapid diagnostic test and treated if positive. A brief survey was performed and for certain responses, a dried blood spot sample collected for genetic analysis. Aggregate health facility data, individual RCD response data and genetic results were analysed spatially and against environmental correlates. RESULTS: Total number of malaria cases remained relatively constant, while the average age of incident cases and the proportion of incident cases reporting recent travel both increased. The estimated R0 in Lusaka was < 1 throughout the study period. RCD responses performed within 250 m of uninhabited/vacant land were associated with a higher probability of identifying additional infections. CONCLUSIONS: Evidence suggests that the majority of malaria infections are imported from outside Lusaka. However there remains some level of local transmission occurring on the periphery of urban settlements, namely in the wet season. Unfortunately, due to the higher-than-expected complexity of infections and the small number of samples tested, genetic analysis was unable to identify any meaningful trends in the data.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Adolescent , Adult , Age Factors , Animals , Child , Child, Preschool , DNA, Protozoan/blood , Female , Humans , Incidence , Malaria, Falciparum/diagnosis , Male , Plasmodium falciparum/genetics , Plasmodium falciparum/isolation & purification , Regression Analysis , Rural Population , Seasons , Spatial Analysis , Travel , Urban Health , Young Adult , Zambia/epidemiology
5.
Malar J ; 18(1): 391, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31796087

ABSTRACT

BACKGROUND: Anti-malarial resistance is, and continues to be a significant challenge in the fight against malaria and a threat to achieving malaria elimination. In Zambia, chloroquine (CQ), a safe, affordable and well-tolerated drug, was removed from use in 2003 due to high levels of resistance evidenced with treatment failure. This study sought to investigate the prevalence of chloroquine resistance markers in Southern and Western Provinces of Zambia 14 years after the withdrawal of CQ. METHODS: Data from a cross-sectional, all-age household survey, conducted during the peak malaria transmission season (April-May 2017) was analysed. During the all-age survey, socio-demographic information and coverage of malaria interventions were collected. Consenting individuals were tested for malaria with a rapid diagnostic test and a spot of blood collected on filter paper to create a dried blood spot (DBS). Photo-induced electronic transfer-polymerase chain reaction (PET-PCR) was used to analyse the DBS for the presence of all four malaria species. Plasmodium falciparum positive samples were analysed by high resolution melt (HRM) PCR to detect the presence of genotypic markers of drug resistance in the P. falciparum chloroquine resistance transporter (Pfcrt) and P. falciparum multi-drug resistance (Pfmdr) genes. RESULTS: A total of 181 P. falciparum positive samples were examined for pfcrt K76T and MDR N86. Of the 181 samples 155 successfully amplified for Pfcrt and 145 for Pfmdr N86. The overall prevalence of CQ drug-resistant parasites was 1.9% (3/155), with no significant difference between the two provinces. No N86Y/F mutations in the Pfmdr gene were observed in any of the sample. CONCLUSION: This study reveals the return of CQ sensitive parasites in Southern and Western Provinces of Zambia 14 years after its withdrawal. Surveillance of molecular resistant markers for anti-malarials should be included in the Malaria Elimination Programme so that resistance is monitored country wide.


Subject(s)
Antimalarials/pharmacology , Chloroquine/pharmacology , Drug Resistance/genetics , Genotype , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Cross-Sectional Studies , Dried Blood Spot Testing , Humans , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plasmodium falciparum/drug effects , Polymerase Chain Reaction , Prevalence , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Time Factors , Zambia/epidemiology
6.
Malar J ; 18(1): 130, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30971231

ABSTRACT

BACKGROUND: Zambia continues to make strides in reducing malaria burden through the use of proven malaria interventions and has recently pledged to eliminate malaria by 2021. Case management services have been scaled up at community level with rapid diagnostic tests (RDTs) providing antigen-based detection of falciparum malaria only. Key to national malaria elimination goals is the ability to identify, treat and eliminate all Plasmodium species. This study sought to determine the distribution of non-falciparum malaria and assess the performance of diagnostic tests for Plasmodium falciparum in Western and Southern Provinces of Zambia, two provinces planned for early malaria elimination. METHODS: A sub-set of individuals' data and samples from a cross-sectional household survey, conducted during peak malaria transmission season in April and May 2017, was used. The survey collected socio-demographic information on household members and coverage of malaria interventions. Malaria testing was done on respondents of all ages using blood smears and RDTs while dried blood spots were collected on filter papers for analysis using photo-induced electron transfer polymerase chain reaction (PET-PCR). Slides were stained using Giemsa stain and examined by microscopy for malaria parasites. RESULTS: From the 1567 individuals included, the overall prevalence of malaria was 19.4% (CI 17.5-21.4) by PCR, 19.3% (CI 17.4-21.4) by RDT and 12.9% (CI 11.3-14.7) by microscopy. Using PET-PCR as the gold standard, RDTs showed a sensitivity of 75.7% (CI 70.4-80.4) and specificity of 94.2% (CI 92.8-95.4). The positive predictive value (PPV) was 75.9% (CI 70.7-80.6) and negative predictive value (NPV) was 94.1% (CI 92.1-95.4). In contrast, microscopy for sensitivity, specificity, PPV, and NPV values were 56.9% (CI 51.1-62.5), 97.7% (CI 96.7-98.5), 85.6% (CI 80.0-90.2), 90.4% (CI 88.7-91.9), respectively. Non-falciparum infections were found only in Western Province, where 11.6% of P. falciparum infections were co-infections with Plasmodium ovale or Plasmodium malariae. CONCLUSION: From the sub-set of survey data analysed, non-falciparum species are present and occurred as mixed infections. As expected, PET-PCR was slightly more sensitive than both malaria RDTs and microscopy to detecting malaria infections.


Subject(s)
Diagnostic Tests, Routine/methods , Malaria, Falciparum/epidemiology , Plasmodium falciparum/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Male , Middle Aged , Sensitivity and Specificity , Young Adult , Zambia/epidemiology
7.
Malar J ; 17(1): 93, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29471832

ABSTRACT

BACKGROUND: Indoor residual spraying (IRS) is a key tool in the fight to control, eliminate and ultimately eradicate malaria. IRS protection is based on a communal effect such that an individual's protection primarily relies on the community-level coverage of IRS with limited protection being provided by household-level coverage. To ensure a communal effect is achieved through IRS, achieving high and uniform community-level coverage should be the ultimate priority of an IRS campaign. Ensuring high community-level coverage of IRS in malaria-endemic areas is challenging given the lack of information available about both the location and number of households needing IRS in any given area. A process termed 'mSpray' has been developed and implemented and involves use of satellite imagery for enumeration for planning IRS and a mobile application to guide IRS implementation. This study assessed (1) the accuracy of the satellite enumeration and (2) how various degrees of spatial aid provided through the mSpray process affected community-level IRS coverage during the 2015 spray campaign in Zambia. METHODS: A 2-stage sampling process was applied to assess accuracy of satellite enumeration to determine number and location of sprayable structures. Results indicated an overall sensitivity of 94% for satellite enumeration compared to finding structures on the ground. RESULTS: After adjusting for structure size, roof, and wall type, households in Nchelenge District where all types of satellite-based spatial aids (paper-based maps plus use of the mobile mSpray application) were used were more likely to have received IRS than Kasama district where maps used were not based on satellite enumeration. The probability of a household being sprayed in Nchelenge district where tablet-based maps were used, did not differ statistically from that of a household in Samfya District, where detailed paper-based spatial aids based on satellite enumeration were provided. CONCLUSION: IRS coverage from the 2015 spray season benefited from the use of spatial aids based upon satellite enumeration. These spatial aids can guide costly IRS planning and implementation leading to attainment of higher spatial coverage, and likely improve disease impact.


Subject(s)
Family Characteristics , Geographic Mapping , Insecticides/administration & dosage , Malaria/prevention & control , Mosquito Control/methods , Female , Humans , Male , Zambia
8.
Malar J ; 16(1): 441, 2017 11 02.
Article in English | MEDLINE | ID: mdl-29096632

ABSTRACT

BACKGROUND: Malaria is a significant burden to health systems and is responsible for a large proportion of outpatient cases at health facilities in endemic regions. The scale-up of community management of malaria and reactive case detection likely affect both malaria cases and outpatient attendance at health facilities. Using health management information data from 2012 to 2013 this article examines health trends before and after the training of volunteer community health workers to test and treat malaria cases in Southern Province, Zambia. RESULTS: An estimated 50% increase in monthly reported malaria infections was found when community health workers were involved with malaria testing and treating in the community (incidence rate ratio 1.52, p < 0.001). Furthermore, an estimated 6% decrease in outpatient attendance at the health facility was found when community health workers were involved with malaria testing and treating in the community. CONCLUSIONS: These results suggest a large public health benefit to both community case management of malaria and reactive case detection. First, the capacity of the malaria surveillance system to identify malaria infections was increased by nearly one-third. Second, the outpatient attendance at health facilities was modestly decreased. Expanding the capacity of the malaria surveillance programme through systems such as community case management and reactive case detection is an important step toward malaria elimination.


Subject(s)
Case Management/trends , Community Health Workers/supply & distribution , Health Facilities/statistics & numerical data , Malaria/prevention & control , Community Health Workers/trends , Humans , Incidence , Malaria/epidemiology , Malaria/parasitology , Zambia/epidemiology
9.
Malar J ; 16(1): 18, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28061853

ABSTRACT

BACKGROUND: Decreasing malaria transmission leads to increasing heterogeneity with increased risk in both hot spots (locations) and hot pops (certain demographics). In Southern Province, Zambia, reactive case detection has formed a part of malaria surveillance and elimination efforts since 2011. Various factors may be associated with finding malaria infections during case investigations, including the demographics of the incident case and environmental characteristics of the location of the incident case. METHODS: Community health worker registries were used to determine what factors were associated with finding a malaria infection during reactive case detection. RESULTS: Location was a more powerful predictor of finding malaria infections during case investigations than the demographics of the incident case. After accounting for environmental characteristics, no demographics around the incident case were associated with finding malaria infections during case investigations. Various time-invariant measures of the environment, such as median enhanced vegetation index, the topographic position index, the convergence index, and the topographical wetness index, were all associated as expected with increased probability of finding a malaria infection during case investigations. CONCLUSIONS: These results suggest that targeting the locations highly at risk of malaria transmission is of importance in elimination settings.


Subject(s)
Disease Transmission, Infectious , Environment , Epidemiological Monitoring , Malaria/epidemiology , Malaria/transmission , Adolescent , Child , Child, Preschool , Demography , Female , Humans , Malaria/diagnosis , Male , Zambia/epidemiology
10.
Malar J ; 15: 11, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26738936

ABSTRACT

BACKGROUND: In Zambia and other sub-Saharan African countries affected by ongoing malaria transmission, indoor residual spraying (IRS) for malaria prevention has typically been implemented over large areas, e.g., district-wide, and targeted to peri-urban areas. However, there is a recent shift in some countries, including Zambia, towards the adoption of a more strategic and targeted IRS approach, in coordination with increased emphasis on universal coverage of long-lasting insecticidal nets (LLINs) and effective insecticide resistance management. A true targeted approach would deliver IRS to sub-district areas identified as high-risk, with the goal of maximizing the prevention of malaria cases and deaths. RESULTS: Together with the Government of the Republic of Zambia, a new methodology was developed applying geographic information systems and satellite imagery to support a targeted IRS campaign during the 2014 spray season using health management information system data. DISCUSSION/CONCLUSION: This case study focuses on the developed methodology while also highlighting the significant research gaps which must be filled to guide countries on the most effective strategy for IRS targeting in the context of universal LLIN coverage and evolving insecticide resistance.


Subject(s)
Insecticides/administration & dosage , Malaria/prevention & control , Mosquito Control/methods , Animals , Anopheles/drug effects , Anopheles/pathogenicity , Geographic Information Systems , Humans , Insect Vectors/drug effects , Insect Vectors/pathogenicity , Insecticide-Treated Bednets , Zambia
11.
Malar J ; 15(1): 400, 2016 Aug 08.
Article in English | MEDLINE | ID: mdl-27502213

ABSTRACT

BACKGROUND: Parts of Zambia with very low malaria parasite prevalence and high coverage of vector control interventions are targeted for malaria elimination through a series of interventions including reactive case detection (RCD) at community level. When a symptomatic individual presenting to a community health worker (CHW) or government clinic is diagnostically confirmed as an incident malaria case an RCD response is initiated. This consists of a CHW screening the community around the incident case with rapid diagnostic tests (RDT) and treating positive cases with artemether-lumefantrine (AL, Coartem™) in accordance with national policy. Since its inception in 2011, Zambia's RCD programme has relied on anecdotal feedback from staff to identify issues and possible solutions. In 2014, a systematic qualitative programme review was conducted to determine perceptions around malaria rates, incentives, operational challenges and solutions according to CHWs, their supervisors and district-level managers. METHODS: A criterion-based sampling framework based on training regime and performance level was used to select nine rural health posts in four districts of Southern Province. Twenty-two staff interviews were completed to produce English or bilingual (CiTonga or Silozi + English) verbatim transcripts, which were then analysed using thematic framework analysis. RESULTS: CHWs, their supervisors and district-level managers strongly credited the system with improving access to malaria services and significantly reducing the number of cases in their area. The main implementation barriers included access (e.g., lack of rain gear, broken bicycles), insufficient number of CHWs for programme coverage, communication (e.g. difficulties maintaining cell phones and "talk time" to transmit data by phone), and inconsistent supply chain (e.g., inadequate numbers of RDT kits and anti-malarial drugs to test and treat uncomplicated cases). CONCLUSIONS: This review highlights the importance of a community surveillance system like RCD in shaping Zambia's malaria elimination campaign by identifying community-based infections that might otherwise remain undetected. At this stage the system must ensure it can meet growing public demand by providing CHWs the tools and materials they need to consistently carry out their work and expand programme reach to more isolated communities. Results from this review will be used to plan programme scale-up into other parts of Zambia.


Subject(s)
Disease Eradication , Epidemiological Monitoring , Health Services Research , Malaria/epidemiology , Malaria/prevention & control , Community Health Workers , Humans , Interviews as Topic , Zambia/epidemiology
12.
Malar J ; 15(1): 412, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27527347

ABSTRACT

BACKGROUND: As malaria transmission declines in many regions of sub-Saharan Africa, interventions to identify the asymptomatic reservoir are being deployed with the goals of improving surveillance and interrupting transmission. Reactive case detection strategies, in which individuals with clinical malaria are followed up at their home and household residents and neighbours are screened and treated for malaria, are increasingly used as part of malaria elimination programmes. METHODS: A reactive screen-and-treat programme was implemented by the National Malaria Control Centre in Southern Province, Zambia, in which individuals residing within 140 m of an index case were screened with a malaria rapid diagnostic test (RDT) and treated if positive. The operational challenges during the early stages of implementing this reactive screen-and-treat programme in the catchment area of Macha Hospital in Southern Province, Zambia were assessed using rural health centre records, ground truth evaluation of community health worker performance, and data from serial cross-sectional surveys. The proportion of individuals infected with Plasmodium falciparum who were identified and treated was estimated by simulating reactive screen-and-treat and focal drug administration cascades. RESULTS: Within the 1st year of implementation, community health workers followed up 32 % of eligible index cases. When index cases were followed up, 66 % of residents were at home in the index households and 58 % in neighbouring households. Forty-one neighbouring households of 26 index households were screened, but only 13 (32 %) were within the 140-m screening radius. The parasite prevalence by RDT was 22 % in index households and 5 % in neighbouring households. In a simulation model with complete follow-up, 22 % of the total infected population would be detected with reactive screen-and-treat but 57 % with reactive focal drug administration. CONCLUSIONS: With limited resources, coverage and diagnostic tools, reactive screen-and-treat will likely not be sufficient to achieve malaria elimination in this setting. However, high coverage with reactive focal drug administration could be efficient at decreasing the reservoir of infection and should be considered as an alternative strategy.


Subject(s)
Antimalarials/therapeutic use , Diagnostic Tests, Routine/statistics & numerical data , Disease Transmission, Infectious/prevention & control , Malaria, Falciparum/diagnosis , Malaria, Falciparum/drug therapy , Mass Screening/organization & administration , Plasmodium falciparum/isolation & purification , Adolescent , Adult , Child , Computer Simulation , Cross-Sectional Studies , Diagnostic Tests, Routine/methods , Female , Follow-Up Studies , Health Services Research , Humans , Malaria, Falciparum/transmission , Male , Mass Screening/methods , Young Adult , Zambia
13.
Malar J ; 14: 345, 2015 Sep 17.
Article in English | MEDLINE | ID: mdl-26376980

ABSTRACT

BACKGROUND: Defining the number and location of sprayable structures (houses) is foundational to plan and monitor indoor residual spray (IRS) implementation, a primary intervention used to control the transmission of malaria. Only by mapping the location and type of all sprayable structures can IRS operations be planned, estimates of spray coverage determined, and targeted delivery of IRS to specific locations be achieved. Previously, field-based enumeration has been used to guide IRS campaigns, however, this approach is costly, time-consuming and difficult to scale. As a result, field-based enumeration typically fails to map all structures in a given area, making estimations less reliable and reducing the enumerated coverage. METHODS: Using open source satellite imagery and Geographic Information System software, satellite enumeration was conducted to guide IRS operations in 15 districts (91,302 km(2)) in northern Zambia during the 2014 spray season. Cost of satellite enumeration was compared to standard enumeration. Enumerated households were sampled to estimate sprayable surface area and wall type from the satellite enumeration using linear and logistic regression, respectively. RESULTS: In comparison to the traditional field-based enumeration procedure, satellite-based enumeration was 22 times faster, and 10 times less costly. An estimated 98 % of the satellite enumerated buildings correctly classified roof type. Predicted surface area of each household correlated at a value of 0.91 with measured surface area of each household. CONCLUSION: For IRS campaigns, high quality and high coverage enumeration data aid in planning, through informed insecticide procurement. Through the identification of geographical areas and populations to target, enumeration data guide operations and assist monitoring and evaluation of IRS through the unbiased estimation of coverage achieved. Satellite enumeration represents a quick, cheap and accurate system to provide these data, and has potential applications beyond IRS for delivery of other targeted or non-targeted interventions (e.g. net distributions, mass drug administration, immunization campaigns, or even sampling frames for field studies).


Subject(s)
Geographic Information Systems , Insecticides/therapeutic use , Malaria/prevention & control , Mosquito Control , Humans , Zambia
14.
Malar J ; 14: 465, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26586264

ABSTRACT

BACKGROUND: Repeat national household surveys suggest highly variable malaria transmission and increasing coverage of high-impact malaria interventions throughout Zambia. Many areas of very low malaria transmission, especially across southern and central regions, are driving efforts towards sub-national elimination. CASE DESCRIPTION: Reactive case detection (RCD) is conducted in Southern Province and urban areas of Lusaka in connection with confirmed incident malaria cases presenting to a community health worker (CHW) or clinic and suspected of being the result of local transmission. CHWs travel to the household of the incident malaria case and screen individuals living in adjacent houses in urban Lusaka and within 140 m in Southern Province for malaria infection using a rapid diagnostic test, treating those testing positive with artemether-lumefantrine. DISCUSSION: Reactive case detection improves access to health care and increases the capacity for the health system to identify malaria infections. The system is useful for targeting malaria interventions, and was instrumental for guiding focal indoor residual spraying in Lusaka during the 2014/2015 spray season. Variations to maximize impact of the current RCD protocol are being considered, including the use of anti-malarials with a longer lasting, post-treatment prophylaxis. CONCLUSION: The RCD system in Zambia is one example of a malaria elimination surveillance system which has increased access to health care within rural communities while leveraging community members to build malaria surveillance capacity.


Subject(s)
Epidemiological Monitoring , Malaria/epidemiology , Artemether, Lumefantrine Drug Combination , Artemisinins/administration & dosage , Chromatography, Affinity , Community Health Workers , Disease Transmission, Infectious , Drug Combinations , Ethanolamines/administration & dosage , Fluorenes/administration & dosage , Health Services Accessibility , Humans , Incidence , Malaria/diagnosis , Malaria/drug therapy , Malaria/transmission , Zambia/epidemiology
15.
Malar J ; 14: 222, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26017275

ABSTRACT

BACKGROUND: Accurate and timely malaria data are crucial to monitor the progress towards and attainment of elimination. Lusaka, the capital city of Zambia, has reported very low malaria prevalence in Malaria Indicator Surveys. Issues of low malaria testing rates, high numbers of unconfirmed malaria cases and over consumption of anti-malarials were common at clinics within Lusaka, however. The Government of Zambia (GRZ) and its partners sought to address these issues through an enhanced surveillance and feedback programme at clinic level. METHODS: The enhanced malaria surveillance programme began in 2011 to verify trends in reported malaria, as well as to implement a data feedback loop to improve data uptake, use, and quality. A process of monthly data collection and provision of feedback was implemented within all GRZ health clinics in Lusaka District. During clinic visits, clinic registers were accessed to record the number of reported malaria cases, malaria test positivity rate, malaria testing rate, and proportion of total suspected malaria that was confirmed with a diagnostic test. RESULTS AND DISCUSSION: Following the enhanced surveillance programme, the odds of receiving a diagnostic test for a suspected malaria case increased (OR = 1.54, 95 % CI = 0.96-2.49) followed by an upward monthly trend (OR = 1.05, 95 % CI = 1.01-1.09). The odds of a reported malaria case being diagnostically confirmed also increased monthly (1.09, 95 % CI 1.04-1.15). After an initial 140 % increase (95 % CI = 91-183 %), costs fell by 11 % each month (95 % CI = 5.7-10.9 %). Although the mean testing rate increased from 18.9 to 64.4 % over the time period, the proportion of reported malaria unconfirmed by diagnostic remained high at 76 %. CONCLUSIONS: Enhanced surveillance and implementation of a data feedback loop have substantially increased malaria testing rates and decreased the number of unconfirmed malaria cases and courses of ACT consumed in Lusaka District within just two years. Continued support of enhanced surveillance in Lusaka as well as national scale-up of the system is recommended to reinforce good case management and to ensure timely, reliable data are available to guide targeting of limited malaria prevention and control resources in Zambia.


Subject(s)
Epidemiological Monitoring , Malaria/epidemiology , Public Health Surveillance/methods , Child, Preschool , Diagnostic Tests, Routine/statistics & numerical data , Humans , Infant , Infant, Newborn , Malaria/diagnosis , Malaria/parasitology , Prevalence , Zambia/epidemiology
16.
medRxiv ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38766239

ABSTRACT

Background: A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle. Methods: We analyzed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Rdatabase. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. Findings: Among the ten antigens analyzed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP119 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. Interpretations: These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritizing conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. Funding: Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).

17.
medRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38370674

ABSTRACT

Genomic surveillance plays a critical role in monitoring malaria transmission and understanding how the parasite adapts in response to interventions. We conducted genomic surveillance of malaria by sequencing 241 Plasmodium falciparum genomes from regions with varying levels of malaria transmission across Zambia. We found genomic evidence of high levels of within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in the country. We identified country-level clustering of parasites from Zambia and neighboring countries, and distinct clustering of parasites from West Africa. Within Zambia, our identity by descent (IBD) relatedness analysis uncovered spatial clustering of closely related parasite pairs at the local level and rare cases of long-distance sharing. Genomic regions with large shared IBD segments and strong positive selection signatures identified genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Together, our findings enhance our understanding of P. falciparum transmission nationwide in Zambia and highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.

18.
Commun Med (Lond) ; 4(1): 67, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582941

ABSTRACT

BACKGROUND: Genomic surveillance is crucial for monitoring malaria transmission and understanding parasite adaptation to interventions. Zambia lacks prior nationwide efforts in malaria genomic surveillance among African countries. METHODS: We conducted genomic surveillance of Plasmodium falciparum parasites from the 2018 Malaria Indicator Survey in Zambia, a nationally representative household survey of children under five years of age. We whole-genome sequenced and analyzed 241 P. falciparum genomes from regions with varying levels of malaria transmission across Zambia and estimated genetic metrics that are informative about transmission intensity, genetic relatedness between parasites, and selection. RESULTS: We provide genomic evidence of widespread within-host polygenomic infections, regardless of epidemiological characteristics, underscoring the extensive and ongoing endemic malaria transmission in Zambia. Our analysis reveals country-level clustering of parasites from Zambia and neighboring regions, with distinct separation in West Africa. Within Zambia, identity by descent (IBD) relatedness analysis uncovers local spatial clustering and rare cases of long-distance sharing of closely related parasite pairs. Genomic regions with large shared IBD segments and strong positive selection signatures implicate genes involved in sulfadoxine-pyrimethamine and artemisinin combination therapies drug resistance, but no signature related to chloroquine resistance. Furthermore, differences in selection signatures, including drug resistance loci, are observed between eastern and western Zambian parasite populations, suggesting variable transmission intensity and ongoing drug pressure. CONCLUSIONS: Our findings enhance our understanding of nationwide P. falciparum transmission in Zambia, establishing a baseline for analyzing parasite genetic metrics as they vary over time and space. These insights highlight the urgency of strengthening malaria control programs and surveillance of antimalarial drug resistance.


Malaria is caused by a parasite that is spread to humans via mosquito bites. It is a leading cause of death in children under five years old in sub-Saharan Africa. Analysis of the malaria parasite's complete set of DNA (its genome) can help us to understand transmission of the disease and how this changes in response to different strategies to control the disease. We analyzed the genomes of malaria parasites from children across Zambia. Our study revealed that 77% of children harbored multiple parasite strains, which suggests that local transmission (transmission between people within the same local area) is high. Genetic evidence for long-distance transmission was rarer. Furthermore, our findings suggest parasites are evolving in response to antimalarial drugs. Our study enhances our understanding of malaria dynamics in Zambia and may help to inform strategies for improved surveillance and control.

19.
Nat Commun ; 15(1): 1413, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360754

ABSTRACT

Genomic surveillance of Plasmodium falciparum malaria can provide policy-relevant information about antimalarial drug resistance, diagnostic test failure, and the evolution of vaccine targets. Yet the large and low complexity genome of P. falciparum complicates the development of genomic methods, while resource constraints in malaria endemic regions can limit their deployment. Here, we demonstrate an approach for targeted nanopore sequencing of P. falciparum from dried blood spots (DBS) that enables cost-effective genomic surveillance of malaria in low-resource settings. We release software that facilitates flexible design of amplicon sequencing panels and use this software to design two target panels for P. falciparum. The panels generate 3-4 kbp reads for eight and sixteen targets respectively, covering key drug-resistance associated genes, diagnostic test antigens, polymorphic markers and the vaccine target csp. We validate our approach on mock and field samples, demonstrating robust sequencing coverage, accurate variant calls within coding sequences, the ability to explore P. falciparum within-sample diversity and to detect deletions underlying rapid diagnostic test failure.


Subject(s)
Malaria, Falciparum , Malaria , Nanopore Sequencing , Vaccines , Humans , Plasmodium falciparum/genetics , Cost-Benefit Analysis , Malaria, Falciparum/diagnosis , Malaria/epidemiology , Genomics
20.
Trends Parasitol ; 39(12): 996-1000, 2023 12.
Article in English | MEDLINE | ID: mdl-37865609

ABSTRACT

Nanopore-based sequencing platforms offer the potential for affordable malaria molecular surveillance (MMS) in resource-limited settings to track and ultimately counteract emerging threats, such as drug resistance and diagnostic escape. Here, we discuss opportunities and challenges to implementing MMS using nanopore sequencing, highlighting priority areas for technical development and innovation.


Subject(s)
Malaria , Nanopore Sequencing , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria/prevention & control , Drug Resistance , Resource-Limited Settings
SELECTION OF CITATIONS
SEARCH DETAIL