ABSTRACT
INTRODUCTION: Cerebral small vessel disease (SVD) is a common cause of stroke/vascular dementia with few effective treatments. Neuroinflammation and increased blood-brain barrier (BBB) permeability may influence pathogenesis. In rodent models, minocycline reduced inflammation/BBB permeability. We determined whether minocycline had a similar effect in patients with SVD. METHODS: MINERVA was a single-center, phase II, randomized, double-blind, placebo-controlled trial. Forty-four participants with moderate-to-severe SVD took minocycline or placebo for 3 months. Co-primary outcomes were microglial signal (determined using 11C-PK11195 positron emission tomography) and BBB permeability (using dynamic contrast-enhanced MRI). RESULTS: Forty-four participants were recruited between September 2019 and June 2022. Minocycline had no effect on 11C-PK11195 binding (relative risk [RR] 1.01, 95% confidence interval [CI] 0.98-1.04), or BBB permeability (RR 0.97, 95% CI 0.91-1.03). Serum inflammatory markers were not affected. DISCUSSION: 11C-PK11195 binding and increased BBB permeability are present in SVD; minocycline did not reduce either process. Whether these pathophysiological mechanisms are disease-causing remains unclear. INTERNATIONAL CLINICAL TRIALS REGISTRY PORTAL IDENTIFIER: ISRCTN15483452 HIGHLIGHTS: We found focal areas of increased microglial signal and increased blood-brain barrier permeability in patients with small vessel disease. Minocycline treatment was not associated with a change in these processes measured using advanced neuroimaging. Blood-brain barrier permeability was dynamic but MRI-derived measurements correlated well with CSF/serum albumin ratio. Advanced neuroimaging is a feasible outcome measure for mechanistic clinical trials.
Subject(s)
Blood-Brain Barrier , Cerebral Small Vessel Diseases , Minocycline , Positron-Emission Tomography , Humans , Minocycline/pharmacology , Cerebral Small Vessel Diseases/drug therapy , Cerebral Small Vessel Diseases/diagnostic imaging , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Double-Blind Method , Female , Aged , Magnetic Resonance Imaging , Inflammation/drug therapy , Middle AgedABSTRACT
BACKGROUND: Recent studies have demonstrated increased microglial activation using 11C-PK11195 positron emission tomography imaging, indicating central nervous system inflammation, in cerebral small vessel disease. However, whether such areas of neuroinflammation progress to tissue damage is uncertain. We determined whether white matter destined to become white matter hyperintensities (WMH) at 1 year had evidence of altered inflammation at baseline. METHODS: Forty subjects with small vessel disease (20 sporadic and 20 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) and 20 controls were recruited to this case-control observational study from in- and out-patient clinics at Addenbrooke's Hospital, Cambridge, UK and imaged at baseline with both 11C-PK11195 positron emission tomography and magnetic resonance imaging; and magnetic resonance imaging including diffusion tensor imaging was repeated at 1 year. WMH were segmented at baseline and 1 year, and areas of new lesion identified. Baseline 11C-PK11195 binding potential and diffusion tensor imaging parameters in these voxels, and normal appearing white matter, was measured. RESULTS: Complete positron emission tomography-magnetic resonance imaging data was available for 17 controls, 16 sporadic small vessel disease, and 14 cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy participants. 11C-PK11195 binding in voxels destined to become new WMH was lower than in normal appearing white matter, which did not progress to WMH (-0.133[±0.081] versus -0.045 [±0.044]; P<0.001). Mean diffusivity was higher and mean fractional anisotropy lower in new WMH voxels than in normal appearing white matter (900 [±80]×10-6 versus 1045 [±149]×10-6 mm2/s and 0.37±0.05 versus 0.29±0.06, both P<0.001) consistent with new WMH showing tissue damage on diffusion tensor imaging a year prior to developing into new WMH; similar results were seen across the 3 groups. CONCLUSIONS: White matter tissue destined to develop into new WMH over the subsequent year is associated with both lower neuroinflammation, and white matter ultrastructural damage at baseline. Our results suggest that this tissue is already damaged 1 year prior to lesion formation. This may reflect that the role of neuroinflammation in the lesion development process occurs at an early stage, although more studies over a longer period would be needed to investigate this further.
Subject(s)
CADASIL , Leukoencephalopathies , White Matter , Humans , Diffusion Tensor Imaging , CADASIL/metabolism , White Matter/pathology , Neuroinflammatory Diseases , Magnetic Resonance Imaging/methods , Cerebral Infarction/pathology , Leukoencephalopathies/pathology , Positron-Emission Tomography , Inflammation/pathology , Brain/pathologyABSTRACT
Background and Purpose- The role of inflammation in ischemic white matter disease is increasingly recognized, and further understanding of the pathophysiology might inform future treatment strategies. Multiple sclerosis (MS) is a chronic autoimmune condition in which inflammation plays a central role that also affects the white matter. We hypothesized that white matter injury might share common mechanisms and used statistical genetics techniques to assess whether having genetically elevated white matter hyperintensity (WMH) volume was associated with increased MS risk. Methods- We investigated the genetic association in 2 cohorts with magnetic resonance imaging-quantified ischemic white matter lesion volume (WMH in stroke; n=2797 and UK Biobank; n=8353) and 14 802 cases of MS and 26 703 controls from the International Multiple Sclerosis Genetics Consortium. We further performed individual-level polygenic risk score calculations for MS and measures of structural white matter disease in UK Biobank. Finally, we looked for evidence of overlapping risk across the whole genome. Results- There was no association of genetic variants influencing MS with WMH volume using summary statistics in the WMH in stroke cohort (relative risk score =1.014; 95% CI, 0.936-1.110) or in the UK Biobank cohort (relative risk score =1.030; 95% CI, 0.932-1.117). Conversely, assessing the contribution of single nucleotide polymorphisms significantly associated with WMH on the risk of MS there was no significant association (relative risk score =0.930; 95% CI, 0.736-1.191). There were no significant associations between polygenic risk scores calculations; these results were robust to the selection of single nucleotide polymorphisms at a range of significance thresholds. Whole genome analysis did not reveal any overlap of risk between the traits. Conclusions- Our results do not provide evidence to suggest a shared mechanism of white matter damage in ischemia and MS. We propose that inflammation acts in distinct pathways because of the differing nature of the primary insult.
Subject(s)
Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/pathology , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , White Matter/pathology , Aged , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Polymorphism, Single NucleotideABSTRACT
BACKGROUND: Fatigue is a common symptom in cerebral small vessel disease (SVD), but its pathogenesis is poorly understood. It has been suggested that inflammation may play a role. We determined whether central (neuro) inflammation and peripheral inflammation were associated with fatigue in SVD. METHODS: Notably, 36 patients with moderate-to-severe SVD underwent neuropsychometric testing, combined positron emission tomography and magnetic resonance imaging (PET-MRI) scan, and blood draw for the analysis of inflammatory blood biomarkers. Microglial signal was taken as a proxy for neuroinflammation, assessed with radioligand 11C-PK11195. Of these, 30 subjects had full PET datasets for analysis. We assessed global 11C-PK11195 binding and hotspots of 11C-PK11195 binding in the normal-appearing white matter, lesioned tissue, and combined total white matter. Peripheral inflammation was assessed with serum C-reactive protein (CRP) and using the Olink cardiovascular III proteomic panel comprising 92 biomarkers of cardiovascular inflammation and endothelial activation. Fatigue was assessed using the fatigue severity scale (FSS), the visual analog fatigue scale, and a subscale of the Geriatric Depression Scale. RESULTS: Mean (SD) age was 68.7 (11.2) years, and 63.9% were male. Of these, 55.6% showed fatigue on the FSS. Fatigued participants had higher disability scores (p = 0.02), higher total GDS scores (p = 0.02), and more commonly reported a history of depression (p = 0.04). 11C-PK11195 ligand binding in the white matter was not associated with any measure of fatigue. Serum CRP was significantly associated with average fatigue score on FSS (ρ = 0.48, p = 0.004); this association persisted when controlling for age, sex, disability score, and depression (ß = 0.49, 95% CI (0.17, 2.26), p = 0.03). Blood biomarkers from the Olink panel showed no association with fatigue. CONCLUSION: In symptomatic SVD patients, neuroinflammation, assessed with microglial marker 11C-PK11195, was not associated with fatigue. We found some evidence for a role of systematic inflammation, evidenced by an association between fatigue severity and raised CRP, but further studies are required to understand this relationship and inform whether it could be therapeutically modified to reduce fatigue severity. DATA ACCESS STATEMENT: Data for this study are available from the corresponding author upon reasonable request.
Subject(s)
Cerebral Small Vessel Diseases , Fatigue , Inflammation , Positron-Emission Tomography , Humans , Cerebral Small Vessel Diseases/complications , Male , Female , Aged , Fatigue/etiology , Middle Aged , Magnetic Resonance Imaging , Biomarkers/blood , C-Reactive Protein/analysis , C-Reactive Protein/metabolism , Isoquinolines , Neuroinflammatory Diseases/complicationsABSTRACT
BACKGROUND: Small vessel disease (SVD) is associated with vascular cognitive impairment (VCI) but why VCI occurs in some, but not other patients, is uncertain. We determined the prevalence of, and risk factors for, VCI in a large cohort of patients with lacunar stroke. METHODS: Participants with magnetic resonance imaging (MRI)-confirmed lacunar stroke were recruited in the multicenter DNA Lacunar 2 study and compared with healthy controls. A logistic regression model was used to determine which vascular risk factors and MRI parameters were independent predictors of VCI, assessed using the Brief Memory and Executive Test (BMET). RESULTS: A total of 912 lacunar stroke patients and 425 controls were included, with mean (SD) age of 64.6 (12.26) and 64.7 (12.29) years, respectively. VCI was detected in 38.8% lacunar patients and 13.4% controls. In a logistic regression model, diabetes mellitus (odds ratio (OR) = 1.98 (95% confidence interval (CI) = 1.40-2.80), p < 0.001) and higher body mass index (BMI) (OR = 1.03 (95% CI = 1.00-1.05), p = 0.029) were independently associated with increased risk of VCI, and years of full-time education with lower risk (OR = 0.92 (95% CI = 0.86-0.99), p = 0.018). When entering both lacune count and white matter hyperintensity (WMH) in the same logistic regression model, only WMH grade was significantly associated with VCI (OR = 1.46 (95% CI = 1.24-1.72), p < 0.001). CONCLUSION: VCI is common in lacunar stroke patients, affecting almost 40%. This prevalence suggests that it should be routinely screened for in clinical practice. Risk factors for VCI in patients with lacunar stroke include diabetes mellitus, depressive symptoms, higher BMI, and WMH severity, while education is protective.
Subject(s)
Cognitive Dysfunction , Diabetes Mellitus , Stroke, Lacunar , Stroke , Humans , Stroke, Lacunar/complications , Stroke, Lacunar/diagnostic imaging , Stroke, Lacunar/epidemiology , Prevalence , Stroke/complications , Stroke/diagnostic imaging , Stroke/epidemiology , Risk Factors , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/complications , Magnetic Resonance ImagingABSTRACT
BACKGROUND AND OBJECTIVES: It has been suggested that white matter hyperintensity lesions (WMHs), which typically progress over time, can also regress, and that this might be associated with favorable cognitive performance. We determined the prevalence of WMH regression in patients with cerebral small vessel disease (SVD) and examined which demographic, clinical, and radiological markers were associated with this regression. METHODS: We used semi-automated lesion marking methods to quantify WMH volume at multiple timepoints in three cohorts with symptomatic SVD; two with moderate-to-severe symptomatic SVD (the SCANS observational cohort and the control arm of the PRESERVE interventional trial) and one with mild-to-moderate SVD (the RUN DMC observational cohort). Mixed-effects ordered logistic regression models were used to test which factors predicted participants to show WMH regression. RESULTS: No participants (0/98) in SCANS, 6/42 (14.3%) participants in PRESERVE, and 6/276 (2.2%) in RUN DMC showed WMH regression. On multivariate analysis, only lower WMH volume (OR: 0.36, 95% CI: 0.23-0.56) and better white matter microstructural integrity assessed by fractional anisotropy using diffusion tensor imaging (OR: 1.55, 95% CI: 1.07-2.24) predicted participant classification as regressor versus stable or progressor. DISCUSSION: Only a small proportion of participants demonstrated WMH regression across the three cohorts, when a blinded standardized assessment method was used. Subjects who showed regression had less severe imaging markers of disease at baseline. Our results show that lesion regression is uncommon in SVD and unlikely to be a major factor affecting the use of WMH quantification as an outcome for clinical trials.
Subject(s)
Cerebral Small Vessel Diseases , Leukoaraiosis , Stroke , White Matter , Humans , Diffusion Tensor Imaging , White Matter/diagnostic imaging , White Matter/pathology , Magnetic Resonance Imaging/methods , Stroke/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Leukoaraiosis/diagnostic imagingABSTRACT
BACKGROUND AND AIM: Whether cerebral microbleeds cause cognitive impairment remains uncertain. We analyzed whether cerebral microbleeds are associated with cognitive dysfunction in patients with symptomatic cerebral small vessel disease, and whether this association is independent of other neuroimaging markers of cerebral small vessel disease. METHODS: We analyzed consecutive patients with MRI-confirmed lacunar stroke included in DNA-Lacunar-2 multicenter study. Cerebral microbleeds were graded using the Brain Observer Microbleed Rating Scale (BOMBS). Neuropsychological assessment was performed using the Brief Memory and Executive Test (BMET). We analyzed the association between cerebral microbleeds, BMET, and the following subdomains: executive function/processing speed and orientation/memory. We also searched for an independent association between cerebral microbleeds and vascular cognitive impairment, defined as BMET ≤ 13. RESULTS: Out of 688 included patients, cerebral microbleeds were detected in 192 (27.9%). After adjusting for white matter hyperintensities severity, lacune count, and other confounders, both the presence and the number of cerebral microbleeds were significantly associated with impaired cognitive performance [ß = -13.0; 95% CI = (-25.3, -0.6) and ß = -13.1; 95% CI = (-19.8, -6.4), respectively]. On analysis of specific cognitive domains, associations were present for executive function/processing speed [ß = -5.8; 95% CI = (-9.3, -2.2) and ß = -4.3; 95% CI = (-6.2, -2.4), respectively] but not for orientation/memory [ß = -0.4; 95% CI = (-4.0, 3.2) and ß = -2.1; 95% CI = (-4.0, 0.1), respectively]. We also found an independent association between the presence and the number of cerebral microbleeds and vascular cognitive impairment [adjusted OR = 1.48; 95% CI = (1.01, 2.18) and OR = 1.43; 95% CI = (1.15, 1.79), respectively]. CONCLUSION: In a large cohort of symptomatic cerebral small vessel disease patients, after controlling for other neuroimaging markers of cerebral small vessel disease severity, cerebral microbleeds were associated with cognitive dysfunction. Executive function and processing speed were predominantly impaired. This might suggest a causal role of cerebral microbleeds in determining vascular cognitive impairment.
Subject(s)
Cerebral Small Vessel Diseases , Cognition Disorders , Cognitive Dysfunction , Stroke , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/psychology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition , Cognition Disorders/complications , Cognition Disorders/etiology , Cognitive Dysfunction/complications , Cognitive Dysfunction/etiology , Humans , Magnetic Resonance Imaging , Neuropsychological Tests , Stroke/complicationsABSTRACT
Background: Cerebral small vessel disease (SVD) is a common cause of stroke and cognitive impairment. Recent data has implicated neuroinflammation and increased blood-brain barrier (BBB) permeability in its pathogenesis, but whether such processes are causal and can be therapeutically modified is uncertain. In a rodent model of SVD, minocycline was associated with reduced white matter lesions, inflammation and BBB permeability. Aims: To determine whether blood-brain barrier permeability (measured using dynamic contrast-enhanced MRI) and microglial activation (measured by positron emission tomography using the radioligand 11C-PK11195) can be modified in SVD. Design: Phase II randomised double blind, placebo-controlled trial of minocycline 100 mg twice daily for 3 months in 44 participants with moderate to severe SVD defined as a clinical lacunar stroke and confluent white matter hyperintensities. Outcomes: Primary outcome measures are volume and intensity of focal increases of blood-brain barrier permeability and microglial activation determined using PET-MRI imaging. Secondary outcome measures include inflammatory biomarkers in serum, and change in conventional MRI markers and cognitive performance over 1 year follow up. Discussion: The MINERVA trial aims to test whether minocycline can influence novel pathological processes thought to be involved in SVD progression, and will provide insights into whether central nervous system inflammation in SVD can be therapeutically modulated.
ABSTRACT
BACKGROUND: Cerebral small vessel disease (SVD) leads to reduced quality of life (QOL), but the mechanisms underlying this relationship remain unknown. This study investigated multivariate relationships between radiological markers of SVD and domain-specific QOL deficits, as well as potential mediators, in patients with SVD. METHODS: Clinical and neuroimaging measures were obtained from a pooled sample of 174 SVD patients from the St. George's Cognition and Neuroimaging in Stroke and PRESsure in established cERebral small VEssel disease studies. Lacunes, white matter hyperintensities, and microbleeds were defined as radiological markers of SVD and delineated using MRI. QOL was assessed using the Stroke-Specific Quality of Life Scale. Multivariate linear regression was used to determine whether SVD markers were associated with domain-specific QOL deficits. Significant associations were further investigated using mediation analysis to examine whether functional disability or cognition was potential mediators. RESULTS: Multivariate regression analyses revealed that lacunes were associated with total QOL score (ß = -8.22, p = .02), as well as reductions in mobility (ß = -1.41, p = .008) and language-related subdomains (ß = -0.69, p = .033). White matter hyperintensities and microbleeds showed univariate correlations with QOL, but these became nonsignificant during multivariate analyses. Mediation analyses revealed that functional disability, defined as reduced activities of daily living, and executive function, partially mediated the relationship between lacunes and total QOL, as well as mobility-related QOL, but not language-related QOL. CONCLUSIONS: Lacunar infarcts have the most detrimental effect on QOL in SVD patients, particularly in the mobility and language-related subdomains. These effects may be partially explained by a reduction in activities of daily living. These results may inform targeted interventions to improve QOL in patients with SVD.
Subject(s)
Cerebral Small Vessel Diseases , Stroke, Lacunar , Activities of Daily Living , Cerebral Small Vessel Diseases/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging , Quality of LifeABSTRACT
Tuberculosis (TB) vaccine development is hindered by the lack of clear surrogate markers of protective human immunity to Mycobacterium tuberculosis. This study evaluated the hypothesis that immune-mediated inhibition of mycobacterial growth would more directly correlate with protective TB immunity than other immunologic responses. Bacille Calmette-Guérin (BCG) vaccination, known to induce partial protection against TB, was used as a model system to investigate mechanistic relationships among different parameters of antigen-specific immunity. Effects of primary and booster intradermal BCG vaccinations were assessed in 3 distinct assays of mycobacterial inhibition. Correlations between vaccine-induced growth inhibition and other immune responses were analyzed. BCG significantly enhanced all antigen-specific responses. Peak responses occurred at 2 months after boosting. Statistical analyses suggested that each assay measured unique aspects of mycobacterial immunity. Despite previous evidence that type 1 immune responses are essential for TB immunity, interferon-gamma production did not correlate with mycobacterial inhibition. These results have important implications for TB vaccine development.