Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Proc Natl Acad Sci U S A ; 121(4): e2311732121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38232289

ABSTRACT

Rechargeable lithium (Li) metal batteries face challenges in achieving stable cycling due to the instability of the solid electrolyte interphase (SEI). The Li-ion solvation structure and its desolvation process are crucial for the formation of a stable SEI on Li metal anodes and improving Li plating/stripping kinetics. This research introduces an interfacial desolvation coating technique to actively modulate the Li-ion solvation structure at the Li metal interface and regulate the participation of the electrolyte solvent in SEI formation. Through experimental investigations conducted using a carbonate electrolyte with limited compatibility to Li metal, the optimized desolvation coating layer, composed of 12-crown-4 ether-modified silica materials, selectively displaces strongly coordinating solvents while simultaneously enriching weakly coordinating fluorinated solvents at the Li metal/electrolyte interface. This selective desolvation and enrichment effect reduce solvent participation to SEI and thus facilitate the formation of a LiF-dominant SEI with greatly reduced organic species on the Li metal surface, as conclusively verified through various characterization techniques including XPS, quantitative NMR, operando NMR, cryo-TEM, EELS, and EDS. The interfacial desolvation coating technique enables excellent rate cycling stability (i.e., 1C) of the Li metal anode and prolonged cycling life of the Li||LiCoO2 pouch cell in the conventional carbonate electrolyte (E/C 2.6 g/Ah), with 80% capacity retention after 333 cycles.

2.
Macromol Rapid Commun ; 43(20): e2200335, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35726135

ABSTRACT

Solid polymer electrolytes (SPEs) have attracted considerable attention for high energy solid-state lithium metal batteries (LMBs). In this work, potentially ecofriendly, solid-state poly(ε-caprolactone) (PCL)-based star polymer electrolytes with cross-linked structures (xBt-PCL) are introduced that robustly cycle against LiNi0.6 Mn0.2 Co0.2 O2 (NMC622) composite cathodes, affording long-term stability even at higher current densities. Their superior features allow for sufficient suppression of dendritic lithium deposits, as monitored by 7 Li solid-state NMR. Advantageous electrolyte|electrode interfacial properties derived from cathode impregnation with 1.5 wt% PCL enable decent cell performance until up to 500 cycles at rates of 1C (60 °C), illustrating the high potential of PCL-based SPEs for application in high-voltage LMBs.


Subject(s)
Lithium , Polymers , Electrolytes
3.
Angew Chem Int Ed Engl ; 60(21): 11919-11927, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33645903

ABSTRACT

N-alkyl-N-alkyl pyrrolidinium-based ionic liquids (ILs) are promising candidates as non-flammable plasticizers for lowering the operation temperature of poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs), but they present limitations in terms of lithium-ion transport, such as a much lower lithium transference number. Thus, a pyrrolidinium cation was prepared with an oligo(ethylene oxide) substituent with seven repeating units. We show, by a combination of experimental characterizations and simulations, that the cation's solvating properties allow faster lithium-ion transport than alkyl-substituted analogues when incorporated in SPEs. This proceeds not only by accelerating the conduction modes of PEO, but also by enabling new conduction modes linked to the solvation of lithium by a single IL cation. This, combined with favorable interfacial properties versus lithium metal, leads to significantly improved performance on lithium-metal polymer batteries.

4.
Phys Chem Chem Phys ; 21(47): 26084-26094, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31746873

ABSTRACT

A major challenge of lithium metal electrodes, in theory a suitable choice for rechargeable high energy density batteries, comprises non-homogeneous lithium deposition and the growth of reactive high surface area lithium, which eventually yields active material losses and safety risks. While it is hard to fully avoid inhomogeneous deposits, the achievable morphology of the occurring lithium deposits critically determines the long-term cycling behaviour of the cells. In this work, we focus on a combined scanning electron microscopy (SEM) and 7Li nuclear magnetic resonance spectroscopy (7Li-NMR) study to unravel the impact of the choice of conducting salts (LiPF6 and LiTFSI), solvents (EC : DEC, 3 : 7, DME : DOL, 1 : 1), as well as their respective concentrations (1 M, 3 M) on the electrodeposition process, demonstrating that lithium deposition morphologies may be controlled to a large extent by proper choice of cycling conditions and electrolyte constituents. In addition, the applicability of 7Li-NMR spectroscopy to assess the resulting morphology is discussed. It was found, that lithium deposition analysis based on the 7Li chemical shift and intensity should be used carefully, as various morphologies can lead to similar results. Still, our case study reveals that the combination of SEM and NMR data is rather advantageous and offers complementary insights that may provide pathways for the future design of tailored electrolytes.

5.
Chemistry ; 22(8): 2599-604, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26711699

ABSTRACT

The all-phosphorus analogue of benzene, stabilized as middle deck in triple-decker complexes, is a promising building block for the formation of graphene-like sheet structures. The reaction of [(CpMo)2 (µ,η(6) :η(6)-P6)] (1) with CuX (X=Br, I) leads to self-assembly into unprecedented 2D networks of [{(CpMo)2P6}(CuBr)4 ]n (2) and [{(CpMo)2 P6}(CuI)2]n (3). X-ray structural analyses show a unique deformation of the previously planar cyclo-P6 ligand. This includes bending of one P atom in an envelope conformation as well as a bisallylic distortion. Despite this, 2 and 3 form planar layers. Both polymers were furthermore analyzed by (31)P{(1)H} magic angle spinning (MAS) NMR spectroscopy, revealing signals corresponding to six non-equivalent phosphorus sites. A peak assignment is achieved by 2D correlation spectra as well as by DFT chemical shift computations.

6.
Angew Chem Int Ed Engl ; 55(46): 14459-14463, 2016 11 07.
Article in English | MEDLINE | ID: mdl-27739641

ABSTRACT

Internal defect SiOH and SiO- groups evolve during the structure formation of high-Si zeolites in the presence of a cationic organic structure-directing agent (SDA). These negatively charged defects do not completely disappear upon calcination. Herein we investigate the clustering of defect groups and their location within the pore walls of four zeolites. ZSM-12, ZSM-5, and SSZ-74 have three clustered SiOH groups which are hydrogen-bonded to SiO- , whereas SSZ-24 has only two. These defects interact with the structure-directing quaternary ammonium ions preferably close to the charge center, unless steric shielding is present. The framework topologies of ZSM-12, ZSM-5, and SSZ-24 have connected six-rings where the organics interact with the defects. It is suggested that these six-ring patterns form connectivity defects. SSZ-74 is unique, it does not contain an extended six-ring motif, so vacancy defects form instead.

7.
Angew Chem Int Ed Engl ; 55(24): 6858-63, 2016 06 06.
Article in English | MEDLINE | ID: mdl-27100378

ABSTRACT

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have drawn much attention due to their unique physical and chemical properties. Using TMDs as templates for the generation of 2D sandwich-like materials with remarkable properties still remains a great challenge due to their poor solvent processability. Herein, MoS2 -coupled sandwich-like conjugated microporous polymers (M-CMPs) with high specific surface area were successfully developed by using functionalized MoS2 nanosheets as template. As-prepared M-CMPs were further used as precursors for preparation of MoS2 -embedded nitrogen-doped porous carbon nanosheets, which were revealed as novel electrocatalysts for oxygen reduction reaction with mainly four-electron transfer mechanism and ultralow half-wave potential in comparison with commercial Pt/C catalyst. Our strategy to core-shelled sandwich-like hybrids paves a way for a new class of 2D hybrids for energy conversion and storage.

8.
Solid State Nucl Magn Reson ; 65: 29-40, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25541425

ABSTRACT

An efficient, simplified protocol for solvent-drop assisted co-crystal preparation of ezetimibe (a drug for the treatment of primary hypercholesterolemia) with both imidazole and l-proline has been derived. The structures of the white powders were successfully solved via "NMR crystallography" combining solid-state NMR, powder X-ray diffraction and DFT chemical shift computations. Detailed insights into the likely crystallization mechanism were obtained from competition experiments, where efficient co-crystallization was feasible using ezetimibe monohydrate as precursor indicating that the crystal water acts as "molecular catalyst". It was also found that co-crystallization of imidazole is favored over l-proline, thus suggesting a clear preference of neutral hydrogen bonds compared to charge-assisted motifs.


Subject(s)
Ezetimibe/chemistry , Crystallography, X-Ray , Imidazoles/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Conformation , Proline/chemistry
9.
J Phys Chem A ; 118(12): 2316-31, 2014 Mar 27.
Article in English | MEDLINE | ID: mdl-24559453

ABSTRACT

No-bond (31)P-(31)P indirect dipolar couplings, which arise from the transmission of nuclear spin polarization through interaction of proximal nonbonded electron pairs have been investigated in the solid state for a series of closely related substituted P,P-[3]ferrocenophanes and model systems. Through variation and combination of ligands (phenyl, cyclohexyl, isopropyl) at the two phosphorus sites, the P···P distances in these compounds can be varied from 3.49 to 4.06 Å. Thus, the distance dependence of the indirect no-bond coupling constant J(nb) can be studied in a series of closely related compounds. One- and two-dimensional solid-state NMR experiments serve to establish the character of these couplings and to measure the isotropic coupling constants J(iso), which were found to range between 12 and 250 Hz. To develop an understanding of the magnitude of J(nb) in terms of molecular structure, their dependences on intramolecular internuclear distances and relative orbital orientations is discussed by DFT-calculations on suitable models. In agreement with the literature the dependence of J(nb) on the P···P distance is found to be exponential; however, the steepness of this curve is highly dependent on the internuclear equilibrium distance. For a quantitative description, the off-diagonal elements of the expectation value of the Kohn-Sham-Fock operator in the LMO basis for the LMOs of the two phosphorus lone-pairs is proposed. This parameter correlates linearly with the calculated J(nb) values and possesses the same distance-dependence. In addition, the simulations indicate a distinct dependence of J(nb) on the dihedral angle defined by the two C-P bonds providing ligation to the molecular backbone. For disordered materials or those featuring multiple sites, conformers, and/or polymorphism, a new double-quantum NMR method termed DQ-DRENAR can be used to conveniently measure internuclear (31)P-(31)P distances. If conducted on compounds with known P···P distances, such measurements can also serve to estimate the magnitude of the anisotropy ΔJ of these no-bond indirect spin-spin couplings. The DFT results suggest that in the present series of compounds the magnitude of ΔJ is strongly correlated with that of the isotropic component, as both parameters have analogous distance dependences. While our studies indicate a sizable J-anisotropy for the model compound 1,8-bis(diphenylphosphino)napthalene (ΔJ ~ -70 Hz), the corresponding values for the P,P-[3]ferrocenophanes are significantly smaller, affecting their DQ-DRENAR curves only in a minor way. Based on the above insights, the structural aspects of conformational disorder and polymorphism observed in some of the P,P-[3]ferrocenophanes are discussed.

10.
ACS Appl Mater Interfaces ; 16(17): 21932-21942, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38649156

ABSTRACT

Solid-state batteries based on lithium metal anodes, solid electrolytes, and composite cathodes constitute a promising battery concept for achieving high energy density. Charge carrier transport within the cells is governed by solid-solid contacts, emphasizing the importance of well-designed interfaces. A key parameter for enhancing the interfacial contacts among electrode active materials and electrolytes comprises externally applied pressure onto the cell stack, particularly in the case of ceramic electrolytes. Reports exploring the impact of external pressure on polymer-based cells are, however, scarce due to overall better wetting behavior. In this work, the consequences of externally applied pressure in view of key performance indicators, including cell longevity, rate capability, and limiting current density in single-layer pouch-type NMC622||Li cells, are evaluated employing cross-linked poly(ethylene oxide), xPEO, and cross-linked cyclodextrin grafted poly(caprolactone), xGCD-PCL. Notably, externally applied pressure substantially changes the cell's electrochemical cycling performance, strongly depending on the mechanical properties of the considered polymers. Higher external pressure potentially enhances electrode-electrolyte interfaces, thereby boosting the rate capability of pouch-type cells, despite the fact that the cell longevity may be reduced upon plastic deformation of the polymer electrolytes when passing beyond intrinsic thresholds of compressive stress. For the softer xGCD-PCL membrane, cycling of cells is only feasible in the absence of external pressure, whereas in the case of xPEO, a trade-off between enhanced rate capability and minimal membrane deformation is achieved at cell pressures of ≤0.43 MPa, which is considerably lower and more practical compared to cells employing ceramic electrolytes with ≥5 MPa external pressure.

11.
Article in English | MEDLINE | ID: mdl-38606845

ABSTRACT

To address the issue that a single coating agent cannot simultaneously enhance Li+-ion transport and electronic conductivity of Ni-rich cathode materials with surface modification, in the present study, we first successfully synthesized a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material by a Taylor-flow reactor followed by surface coating with Li-BTJ and dispersion of vapor-grown carbon fibers treated with polydopamine (PDA-VGCF) filler in the composite slurry. The Li-BTJ hybrid oligomer coating can suppress side reactions and enhance ionic conductivity, and the PDA-VGCFs filler can increase electronic conductivity. As a result of the synergistic effect of the dual conducting agents, the cells based on the modified NCM811 electrodes deliver superior cycling stability and rate capability, as compared to the bare NCM811 electrode. The CR2032 coin-type cells with the NCM811@Li-BTJ + PDA-VGCF electrode retain a discharge specific capacity of ∼92.2% at 1C after 200 cycles between 2.8 and 4.3 V (vs Li/Li+), while bare NCM811 retains only 84.0%. Moreover, the NCM811@Li-BTJ + PDA-VGCF electrode-based cells reduced the total heat (Qt) by ca. 7.0% at 35 °C over the bare electrode. Remarkably, the Li-BTJ hybrid oligomer coating on the surface of the NCM811 active particles acts as an artificial cathode electrolyte interphase (ACEI) layer, mitigating irreversible surface phase transformation of the layered NCM811 cathode and facilitating Li+ ion transport. Meanwhile, the fiber-shaped PDA-VGCF filler significantly reduced microcrack propagation during cycling and promoted the electronic conductance of the NCM811-based electrode. Generally, enlightened with the current experimental findings, the concerted ion and electron conductive agents significantly enhanced the Ni-rich cathode-based cell performance, which is a promising strategy to apply to other Ni-rich cathode materials for lithium-ion batteries.

12.
Angew Chem Int Ed Engl ; 52(38): 10097-101, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23929814

ABSTRACT

ß-sheet-encoded anionic and cationic dendritic peptide amphiphiles form supramolecular copolymers when self-assembled in a 1:1 feed ratio of the monomers. These ampholytic materials have been designed for on-off polymerization in response to pH triggers. The cooperative supramolecular self-assembly process is switched on at a physiologically relevant pH value and can be switched off by increasing or decreasing the pH value.


Subject(s)
Polymers/chemical synthesis , Hydrogen-Ion Concentration , Molecular Structure , Polymers/chemistry
13.
J Colloid Interface Sci ; 649: 804-814, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37390528

ABSTRACT

Improving the quality of the solid-electrolyte interphase (SEI) layer is highly imperative to stabilize the Li-metal anodes for the practical application of high-energy-density batteries. However, controllably managing the formation of robust SEI layers on the anode is challenging in state-of-the-art electrolytes. Herein, we discuss the role of dual additives fluoroethylene carbonate (FEC) and lithium difluorophosphate (LiPO2F2, LiPF) within the commercial electrolyte mixture (LiPF6/EC/DEC) considering their reactivity with Li metal anodes using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Synergistic effects of dual additives on SEI formation mechanisms are explored systematically by invoking different electrolyte mixtures including pure electrolyte (LP47), mono-additive (LP47/FEC and LP47/LiPF), and dual additives (LP47/FEC/LiPF). The present work suggests that the addition of dual additives accelerates the reduction of salt and additives while increasing the formation of a LiF-rich SEI layer. In addition, calculated atomic charges are applied to predict the representative F1s X-ray photoelectron (XPS) signal, and our results agree well with the experimentally identified SEI components. The nature of carbon and oxygen-containing groups resulting from the electrolyte decompositions at the anode surface is also analyzed. We find that the presence of dual additives inhibits undesirable solvent degradation in the respective mixtures, which effectively restricts the hazardous side products at the electrolyte-anode interface and improves SEI layer quality.

14.
Sci Rep ; 13(1): 10934, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414786

ABSTRACT

Organic radical batteries (ORBs) represent a viable pathway to a more sustainable energy storage technology compared to conventional Li-ion batteries. For further materials and cell development towards competitive energy and power densities, a deeper understanding of electron transport and conductivity in organic radical polymer cathodes is required. Such electron transport is characterised by electron hopping processes, which depend on the presence of closely spaced hopping sites. Using a combination of electrochemical, electron paramagnetic resonance (EPR) spectroscopic, and theoretical molecular dynamics as well as density functional theory modelling techniques, we explored how compositional characteristics of cross-linked poly(2,2,6,6-tetramethyl-1-piperidinyloxy-4-yl methacrylate) (PTMA) polymers govern electron hopping and rationalise their impact on ORB performance. Electrochemistry and EPR spectroscopy not only show a correlation between capacity and the total number of radicals in an ORB using a PTMA cathode, but also indicates that the state-of-health degrades about twice as fast if the amount of radical is reduced by 15%. The presence of up to 3% free monomer radicals did not improve fast charging capabilities. Pulsed EPR indicated that these radicals readily dissolve into the electrolyte but a direct effect on battery degradation could not be shown. However, a qualitative impact cannot be excluded either. The work further illustrates that nitroxide units have a high affinity to the carbon black conductive additive, indicating the possibility of its participation in electron hopping. At the same time, the polymers attempt to adopt a compact conformation to increase radical-radical contact. Hence, a kinetic competition exists, which might gradually be altered towards a thermodynamically more stable configuration by repeated cycling, yet further investigations are required for its characterisation.


Subject(s)
Electrolytes , Polymers , Electron Transport , Electrolytes/chemistry , Free Radicals/chemistry , Polymers/chemistry , Electronics
15.
Chemistry ; 18(4): 1168-79, 2012 Jan 23.
Article in English | MEDLINE | ID: mdl-22213146

ABSTRACT

Slow diffusion reactions of the pentaphosphaferrocene [Cp*Fe(η(5)-P(5))] (Cp*=η(5)-C(5)Me(5) (1)) with CuX (X=Cl, Br, I) in different stoichiometric ratios and solvent mixtures result in the formation of one- and two-dimensional polymeric compounds 2-6 with molecular formula [{Cu(µ-X)}{Cp*Fe(µ(3),η(5):η(1):η(1)-P(5))}](n) (X=Cl (2a), I (2'c)), [{Cu(µ-I)}{Cp*Fe(µ(3),η(5):η(1):η(1)-P(5))}](n) (3), [{CuX}{Cp*Fe(µ(4),η(5):η(1):η(1):η(1)-P(5))}](n) (X=Cl (4a), Br (4b), I (4c), Br (4'b), I (4'c)), [{Cu(3)(µ-I)(2)(µ(3)-I)}{Cp*Fe(µ(5),η(5):η(1):η(1):η(1):η(1)-P(5))}](n) (5) and [{Cu(4)(µ-X)(4)(CH(3)CN)}{Cp*Fe(µ(7),η(5):η(2):η(1):η(1):η(1):η(1):η(1)-P(5))}](n) (X=Cl (6a), Br (6b)), respectively. The polymeric compounds have been characterised by single-crystal X-ray diffraction analyses and, for selected examples, by magic angle spinning (MAS) NMR spectroscopy. The solid-state structures demonstrate the versatile coordination modes of the cyclo-P(5) ligand of 1, extending from two to five coordinating phosphorus atoms in either σ or σ-and-π fashion. In compounds 2a, 2'c and 3, two phosphorus atoms of 1 coordinate to copper atoms in a 1,2 coordination mode (2a, 2'c) and an unprecedented 1,3 coordination mode (3) to form one-dimensional polymers. Compounds 4a-c, 4'b, 4'c and 5 represent two-dimensional coordination polymers. In compounds 4, three phosphorus atoms coordinate to copper atoms in a 1,2,4 coordination mode, whereas in 5 the cyclo-P(5) ligand binds in an unprecedented 1,2,3,4 coordination mode. The crystal structures of 6a,b display a tilted tube, in which all P atoms of the cyclo-P(5) ligand are coordinated to copper atoms in σ- and π-bonding modes.

16.
Acta Crystallogr B ; 68(Pt 2): 171-81, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22436916

ABSTRACT

Ab-initio crystal structure analysis of organic materials from electron diffraction data is presented. The data were collected using the automated electron diffraction tomography (ADT) technique. The structure solution and refinement route is first validated on the basis of the known crystal structure of tri-p-benzamide. The same procedure is then applied to solve the previously unknown crystal structure of tetra-p-benzamide. In the crystal structure of tetra-p-benzamide, an unusual hydrogen-bonding scheme is realised; the hydrogen-bonding scheme is, however, in perfect agreement with solid-state NMR data.

17.
ACS Appl Mater Interfaces ; 14(4): 5211-5222, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35072445

ABSTRACT

Single-ion conducting polymer electrolytes (SIPE) are particularly promising electrolyte materials in lithium metal-based batteries since theoretical considerations suggest that the immobilization of anions avoids polarization phenomena at electrode|electrolyte interfaces. SIPE in principle could allow for fast charging while preventing cell failure induced by short circuits arising from the growth of inhomogeneous Li depositions provided that SIPE membranes possess sufficient mechanical stability. To date, different chemical structures are developed for SIPE, where new compounds are often reported through electrochemical characterization at low current rates. Experimental counterparts to model-based assumptions and determination of system limitations by correlating both models and experiments are rare in the literature. Herein, Chazalviel's model, which is derived from ion concentration gradients, is applied to theoretically determine the limiting current density (JLim) of a SIPE. Comparison with the experimentally obtained JLim reveals a large deviation between the theoretical and practical values. Beyond that, charge-discharge profiles show a distinct arcing behavior at moderate current densities (0.5 to 1 mA cm-2), indicating polarization of the cell, which is not so far reported for SIPE. In this context, by application of various electrochemical and physiochemical methods, the details of cell polarization and the role of the solid electrolyte interphase in producing arcing behavior in the voltage profiles in stripping/plating experiments are revealed, which eventually also elucidate the inconsistency of JLim.

18.
ACS Appl Mater Interfaces ; 14(48): 53893-53903, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36421764

ABSTRACT

Polymer electrolytes have the potential to enable rechargeable lithium (Li) metal batteries. However, growth of nonuniform high surface area Li still occurs frequently and eventually leads to a short-circuit. In this study, a single-ion conducting polymer gel electrolyte is operated at room temperature in symmetric Li||Li cells. We use X-ray microtomography and electrochemical impedance spectroscopy (EIS) to study the cells. In separate experiments, cells were cycled at current densities of 0.1 and 0.3 mA cm-2 and short-circuits were obtained eventually after an average of approximately 240 cycles and 30 cycles, respectively. EIS reveals an initially decreasing interfacial resistance associated with electrodeposition of nonuniform Li protrusions and the concomitant increase in electrode surface area. X-ray microtomography images show that many of the nonuniform Li deposits at 0.1 mA cm-2 are related to the presence of impurities in both electrolyte and electrode phases. Protrusions are globular when they are close to electrolyte impurities but are moss-like when they appear near the impurities in the lithium metal. At long times, the interfacial resistance increases, perhaps due to additional impedance due to the formation of additional solid electrolyte interface (SEI) at the growing protrusions until the cells short. At 0.3 mA cm-2, large regions of the electrode-electrolyte interface are covered with mossy deposits. EIS reveals a decreasing interfacial resistance due to the increase in interfacial area up to short-circuit; the increase in interfacial impedance observed at the low current density is not observed. The results emphasize the importance of pure surfaces and materials on the microscopic scale and suggest that modification of interfaces and electrolyte may be necessary to enable uniform Li electrodeposition at high current densities.

19.
ACS Appl Mater Interfaces ; 14(48): 53636-53647, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36409931

ABSTRACT

Polymer electrolytes are attractive candidates to boost the application of rechargeable lithium metal batteries. Single-ion conducting polymers may reduce polarization and lithium dendrite growth, though these materials could be mechanically overly rigid, thus requiring ion mobilizers such as organic solvents to foster transport of Li ions. An inhomogeneous mobilizer distribution and occurrence of preferential Li transport pathways eventually yield favored spots for Li plating, thereby imposing additional mechanical stress and even premature cell short circuits. In this work, we explored ceramic-in-polymer hybrid electrolytes consisting of polymer blends of single-ion conducting polymer and PVdF-HFP, including EC/PC as swelling agents and silane-functionalized LATP particles. The hybrid electrolyte features an oxide-rich layer that notably stabilizes the interphase toward Li metal, enabling single-side lithium deposition for over 700 h at a current density of 0.1 mA cm-2. The incorporated oxide particles significantly reduce the natural solvent uptake from 140 to 38 wt % despite maintaining reasonably high ionic conductivities. Its electrochemical performance was evaluated in LiNi0.6Co0.2Mn0.2O2 (NMC622)||Li metal cells, exhibiting impressive capacity retention over 300 cycles. Notably, very thin LiNbO3 coating of the cathode material further boosts the cycling stability, resulting in an overall capacity retention of 78% over more than 600 cycles, clearly highlighting the potential of hybrid electrolyte concepts.

20.
J Am Chem Soc ; 133(35): 13898-901, 2011 Sep 07.
Article in English | MEDLINE | ID: mdl-21834550

ABSTRACT

Two conjugated copolymers, PPTQT and PTTQT, were developed based on thiadiazoloquinoxalines connected via ethynylene π-spacer to thiophene units. PPTQT showed maximum hole and electron mobility of 0.028 and 0.042 cm(2)/V s, respectively, being the first example of an ambipolar semiconducting material bearing triple bonds in the polymer backbone.

SELECTION OF CITATIONS
SEARCH DETAIL