ABSTRACT
Although the division of the pericycle cells initiates both lateral root development and root-derived callus formation, these developmental processes are affected differently in the strigolactone and karrikin/KARRIKIN INSENSITIVE 2 (KAI2) ligand signalling mutant more axillary growth 2 (max2). Whereas max2 produces more lateral roots than the wild type, it is defective in the regeneration of shoots from root explants. We suggest that the decreased shoot regeneration of max2 originates from delayed formation of callus primordium, yielding less callus material to regenerate shoots. Indeed, when incubated on callus-inducing medium, the pericycle cell division was reduced in max2 and the early gene expression varied when compared with the wild type, as determined by a transcriptomics analysis. Furthermore, the expression of the LATERAL ORGAN BOUNDARIES DOMAIN genes and of callus-induction genes was modified in correlation with the max2 phenotype, suggesting a role for MAX2 in the regulation of the interplay between cytokinin, auxin, and light signalling in callus initiation. Additionally, we found that the in vitro shoot regeneration phenotype of max2 might be caused by a defect in KAI2, rather than in DWARF14, signalling. Nevertheless, the shoot regeneration assays revealed that the strigolactone biosynthesis mutants max3 and max4 also play a minor role.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Ligands , Plant Roots/metabolism , Cytokinins/metabolism , Indoleacetic Acids/metabolismABSTRACT
Celeriac F1 hybrid seed production is currently complicated due to the instability of cytoplasmic male sterile lines. To develop alternative alloplasmic CMS lines, an asymmetric protoplast fusion and hybrid screening methodology was established. Celeriac suspension cells protoplasts were used as the acceptor and carrot, coriander and white celery mesophyll protoplasts as the donor for protoplast fusion experiments. Acceptor cytoplasmic inheritance was inhibited by iodoacetamide treatment and donor nuclear genome inheritance was prevented by UV exposure. Protoplasts were selectively stained and fused using electroporation and polyethylene glycol, and candidate hybrid shoots were obtained. One chloroplast and three mitochondrial markers that could distinguish acceptor and donors organelles were used to characterize over 600 plants obtained after fusion events, without identifying any cybrid. In order to increase the testing efficiency a high number of micro plantlets were pooled and hence the presence of the carrot specific Atp1 marker in one of the pooled samples was detected. We demonstrated that fusion took place between celeriac and a carrot indicating that the creation of viable hybrids is possible although at a very low frequency. These findings open the path for new cytoplasmic hybridization and the isolation of novel CMS lines of celeriac.
ABSTRACT
Chrysanthemum × morifolium protoplasts were isolated and regenerated to assess possible protoclonal variation in the regenerants. After a preliminary screening of the potential of different regeneration systems for protoplast regeneration, we produced a series of cut chrysanthemum 'Arjuna' leaf protoplast regenerants through liquid culture. Regenerants (54) were vegetatively propagated and grown under a commercial production system in 2 different seasons. All screened regenerants were significantly affected with regard to either flower number, flower size, flower weight, leaf weight, stalk weight, or plant size. A significant plant size reduction in 43/52 and 48/49 regenerants for both seasons was the most recorded effect. Also a reduction in flowering induction time up to 10 days, altered flower types and colors were observed. Differences between growing seasons were notable. Possible molecular backgrounds including genome size variation and commercial applications in breeding of chrysanthemum are discussed.
ABSTRACT
Cultivated for the crispy petioles and round, fleshy, and flavored hypocotyl celery and celeriac have over two centuries of breeding history in Europe. In this review paper we summarized the most recent advances touching when necessary the historical context of celery and celeriac breeding. In the post genomic era of research, the genome sequence of celery is only partially available. We comprised however in this paper the most important aspects of celery genetics that are available today and have applicability in celery modern cultivars development. We discussed the problems and traits that drive the main celery and celeriac breeding goals, like hybrid seed production, disease resistance, and interesting enlarged hypocotyl and petiole characteristics. Besides the classical breeding traits we covered the potential of integration of existing cultivars as sources for consumer oriented traits like nutraceuticals and health promoting substances. Sustainability is a subject that is continuously growing in popularity and we looked at the genetic base of celery and celeriac that makes them sources for abiotic stress resistance and candidates for phytoremediation. We explored the fundamental concepts gained in various fields of celery and related species research, as resources for future improvement of celery and celeriac germplasm. We forecast what the next years will bring to Apium breeding.