Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Mol Cell ; 81(11): 2317-2331.e6, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33909988

ABSTRACT

Aberrant energy status contributes to multiple metabolic diseases, including obesity, diabetes, and cancer, but the underlying mechanism remains elusive. Here, we report that ketogenic-diet-induced changes in energy status enhance the efficacy of anti-CTLA-4 immunotherapy by decreasing PD-L1 protein levels and increasing expression of type-I interferon (IFN) and antigen presentation genes. Mechanistically, energy deprivation activates AMP-activated protein kinase (AMPK), which in turn, phosphorylates PD-L1 on Ser283, thereby disrupting its interaction with CMTM4 and subsequently triggering PD-L1 degradation. In addition, AMPK phosphorylates EZH2, which disrupts PRC2 function, leading to enhanced IFNs and antigen presentation gene expression. Through these mechanisms, AMPK agonists or ketogenic diets enhance the efficacy of anti-CTLA-4 immunotherapy and improve the overall survival rate in syngeneic mouse tumor models. Our findings reveal a pivotal role for AMPK in regulating the immune response to immune-checkpoint blockade and advocate for combining ketogenic diets or AMPK agonists with anti-CTLA4 immunotherapy to combat cancer.


Subject(s)
AMP-Activated Protein Kinases/genetics , B7-H1 Antigen/genetics , Breast Neoplasms/genetics , CTLA-4 Antigen/genetics , Colorectal Neoplasms/genetics , Immune Checkpoint Inhibitors , AMP-Activated Protein Kinases/immunology , Allografts , Animals , Antibodies, Neutralizing/pharmacology , Antineoplastic Agents/pharmacology , B7-H1 Antigen/immunology , Biphenyl Compounds/pharmacology , Breast Neoplasms/immunology , Breast Neoplasms/mortality , Breast Neoplasms/therapy , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cell Line, Tumor , Colorectal Neoplasms/immunology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/therapy , Diet, Ketogenic/methods , Energy Metabolism/drug effects , Energy Metabolism/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/immunology , Female , Gene Expression Regulation, Neoplastic , Humans , Immunotherapy/methods , MARVEL Domain-Containing Proteins/genetics , MARVEL Domain-Containing Proteins/immunology , Mice , Mice, Inbred C57BL , Mice, Nude , Pyrones/pharmacology , Signal Transduction , Survival Analysis , Thiophenes/pharmacology
2.
Nature ; 571(7766): E10, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31270456

ABSTRACT

An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.

3.
Nature ; 553(7686): 91-95, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29160310

ABSTRACT

Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit. However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood. Recent studies revealed that response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells. Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1-PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D-CDK4 and the cullin 3-SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D-CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1-PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.


Subject(s)
B7-H1 Antigen/metabolism , Cullin Proteins/metabolism , Cyclin D/metabolism , Cyclin-Dependent Kinase 4/metabolism , Immunologic Surveillance , Neoplasms/immunology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Tumor Escape/immunology , 14-3-3 Proteins/metabolism , Animals , B7-H1 Antigen/biosynthesis , Cdh1 Proteins/metabolism , Cell Cycle , Cell Line , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Female , Humans , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Nuclear Proteins/chemistry , Phosphorylation , Programmed Cell Death 1 Receptor/metabolism , Prostatic Neoplasms/immunology , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , Repressor Proteins/chemistry
4.
BMC Genomics ; 24(1): 624, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37858069

ABSTRACT

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.


Subject(s)
Balantidium , Cypriniformes , Animals , Carbohydrates , Energy Metabolism , Starch
5.
Blood ; 135(17): 1467-1471, 2020 04 23.
Article in English | MEDLINE | ID: mdl-31961925

ABSTRACT

Adult T-cell leukemia/lymphoma (ATLL) in Japan presents at a median age of 70 years and only 5% of patients are <50 years of age. We conducted RNA and targeted DNA sequencing of 8 ATLLs from Japanese patients <50 years of age and identified 3 (37.5%) with both CTLA4-CD28 and inducible costimulator (ICOS)-CD28 fusions. Mutations of PLCG1, PRKCB, and STAT3, which were frequent in other ATLL-sequencing studies, were not identified. Differential expression analysis identified the negative checkpoint molecule LAG3 as the most downregulated gene among cases with the fusions. Immunohistochemistry demonstrated expression of CD80 and CD86, the ligands for CTLA4 and CD28, on ATLL cells and tumor-associated macrophages, respectively. Expression of CTLA4-CD28 in Ba/F3 cells conferred cytokine-independent growth when cocultured with Raji cells that express CD80 and CD86. Growth was associated with recruitment of the p85 subunit of phosphatidylinositol 3-kinase to CTLA4-CD28 and phosphorylation of AKT and extracellular signal-regulated kinase. A CTLA4-blocking antibody reduced cytokine-independent growth in a dose-dependent manner. Together, these results suggest that young Japanese ATLL cases have a unique biology dependent on cell-nonautonomous interactions that drive CD28 signaling. Assessment for CD28 fusions and treatment with CTLA4 blockade should be considered in younger patients with relapsed/refractory ATLL.


Subject(s)
Biomarkers, Tumor/genetics , CD28 Antigens/genetics , CTLA-4 Antigen/genetics , Genome, Human , Leukemia-Lymphoma, Adult T-Cell/genetics , Mutation , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/metabolism , CD28 Antigens/metabolism , CTLA-4 Antigen/metabolism , Female , Follow-Up Studies , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Leukemia-Lymphoma, Adult T-Cell/metabolism , Leukemia-Lymphoma, Adult T-Cell/pathology , Male , Middle Aged , Prognosis
6.
Proc Natl Acad Sci U S A ; 116(34): 16971-16980, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31375632

ABSTRACT

Immunotherapy using checkpoint-blocking antibodies against PD-1 has produced impressive results in a wide range of cancers. However, the response remains heterogeneous among patients. We used noninvasive immuno-positron emission tomography (PET), using 89Zr-labeled PEGylated single-domain antibody fragments (nanobodies or VHHs), to explore the dynamics and distribution of intratumoral CD8+ T cells and CD11b+ myeloid cells in response to anti-PD-1 treatment in the MC38 colorectal mouse adenocarcinoma model. Responding and nonresponding tumors showed consistent differences in the distribution of CD8+ and CD11b+ cells. Anti-PD-1 treatment mobilized CD8+ T cells from the tumor periphery to a more central location. Only those tumors fully infiltrated by CD8+ T cells went on to complete resolution. All tumors contained CD11b+ myeloid cells from the outset of treatment, with later recruitment of additional CD11b+ cells. As tumors grew, the distribution of intratumoral CD11b+ cells became more heterogeneous. Shrinkage of tumors in responders correlated with an increase in the CD11b+ population in the center of the tumors. The changes in distribution of CD8+ and CD11b+ cells, as assessed by PET, served as biomarkers to gauge the efficacy of anti-PD-1 treatment. Single-cell RNA sequencing of RNA from intratumoral CD45+ cells showed that CD11b+ cells in responders and nonresponders were markedly different. The responders exhibited a dominant population of macrophages with an M1-like signature, while the CD45+ population in the nonresponders displayed an M2-like transcriptional signature. Thus, by using immuno-PET and single-cell RNA sequencing, we show that anti-PD-1 treatment not only affects interactions of CD8+ T cells with the tumor but also impacts the intratumoral myeloid compartment.


Subject(s)
Adenocarcinoma , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes , Colorectal Neoplasms , Neoplasm Proteins/immunology , Neoplasms, Experimental , Positron-Emission Tomography , Programmed Cell Death 1 Receptor/immunology , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Animals , CD11b Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Female , Mice , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/immunology , Neoplasms, Experimental/pathology , Neoplasms, Experimental/therapy , Tumor Microenvironment/immunology
7.
Cancer Immunol Immunother ; 68(3): 421-432, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30564891

ABSTRACT

Targeting immune checkpoint pathways, such as programmed death ligand-1 (PD-L1, also known as CD274 or B7-H1) or its receptor programmed cell death-1 (PD-1) has shown improved survival for patients with numerous types of cancers, not limited to lung cancer, melanoma, renal cell carcinoma, and Hodgkin lymphoma. PD-L1 is a co-inhibitory molecule whose expression on the surface of tumor cells is associated with worse prognosis in many tumors. Here we describe a splice variant (secPD-L1) that does not splice into the transmembrane domain, but instead produces a secreted form of PD-L1 that has a unique 18 amino acid tail containing a cysteine that allows it to homodimerize and more effectively inhibit lymphocyte function than monomeric soluble PD-L1. We show that recombinant secPD-L1 can dimerize and inhibit T-cell proliferation and IFN-gamma production in vitro. The secPD-L1 variant is expressed by malignant cells in vitro that also express high levels of full-length PD-L1. Transcriptomic analysis of gene expression across The Cancer Genome Atlas found the strongest association of secPD-L1 with full-length PD-L1, but also with subsets of immunologic genes, such as in myeloid-derived suppressor cells. Moreover, the splice variant is also expressed in normal tissues and within normal peripheral blood cells it is preferentially expressed in activated myeloid cells. This is the first report of a form of secreted PD-L1 that homodimerizes and is functionally active. SecPD-L1 may function as a paracrine negative immune regulator within the tumor, since secPD-L1 does not require a cell-to-cell interaction to mediate its inhibitory effect.


Subject(s)
B7-H1 Antigen/genetics , Immunosuppressive Agents/pharmacology , Protein Multimerization , RNA Splicing , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/chemistry , B7-H1 Antigen/pharmacology , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , Myeloid-Derived Suppressor Cells/physiology , Placenta/metabolism , Pregnancy , Tumor Microenvironment
8.
Adv Exp Med Biol ; 1026: 315-330, 2017.
Article in English | MEDLINE | ID: mdl-29282691

ABSTRACT

Therapeutic cancer vaccines aim to treat pre-existing cancer by boosting the patient's own immune system, which is an attractive strategy for cancer treatment. The cancer vaccines have mainly been designed to elicit antitumor T-cell immune responses that recognize and eradicate cancer. The advantages of cancer immunotherapy with cancer vaccines include a) high specificity of tumor antigen, b) minimal vaccine-related adverse events, and c) long-lasting immunity boosted by cancer vaccine which is important to control tumor relapse. In this chapter, we discuss identification of tumor antigens in breast cancer (e.g., cancer-testis antigens, neoantigens, HER2/neu, MUC1), the vaccine delivery systems utilized in breast cancer treatment (e.g., peptide vaccines, dendritic cell-based vaccines, and whole tumor cell-based vaccines), as well as clinical trials with therapeutic breast cancer vaccines. Moreover, new-generation clinical trials of breast cancer vaccines will aim at employing personalized vaccines designed to harness robust immune response to a custom-made neoantigen in the patient with breast cancer. Combination of vaccination and other forms of cancer therapy such as chemotherapy, radiotherapy, targeted therapy with monoclonal antibody, or immune checkpoint blockade will be required to achieve potent and durable antitumor clinical benefits.


Subject(s)
Breast Neoplasms/drug therapy , Cancer Vaccines/therapeutic use , Immunotherapy, Active , T-Lymphocytes/immunology , Antigens, Neoplasm/immunology , Antigens, Neoplasm/therapeutic use , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cancer Vaccines/immunology , Drug Delivery Systems , Female , Humans , Immune System/drug effects , Immunotherapy/methods
9.
Adv Exp Med Biol ; 1026: 383-402, 2017.
Article in English | MEDLINE | ID: mdl-29282694

ABSTRACT

Cancer immunotherapy is emerging as the most promising novel strategy for cancer treatment. Cancer immunotherapy is broadly categorized into three forms: immune checkpoint modulation, adoptive cell transfer, and cancer vaccine. Immune checkpoint blockade is demonstrated as the most clinically effective treatment with low immune-related adverse events (irAE). Blockade of PD-1/PD-L1 and CTLA-4 has achieved remarkable success in treating various types of tumors, which sparks great interests in this therapeutic strategy and expands the role of immune checkpoint blockade in treating tumors including breast cancer. Based on the notable results obtained from clinical trials, the United States' Food and Drug Administration (FDA) has approved multiple CTLA-4 monoclonal antibodies as well as the PD-1/PD-L1 monoclonal antibodies for treatment of different types of tumors. The theories of immunoediting, T-cell exhaustions, and co-stimulatory/co-inhibitory pathways are immunological foundations for immune checkpoint blockade therapy. Breast cancers such as triple negative breast cancer and HER-2 negative breast cancer respond to immune checkpoint blockade therapy due to their high immunogenicity. PD-1/PD-L1 blockade has just received FDA approval as a standard cancer therapy for solid tumors such as breast cancer. Development of immune checkpoint blockade focuses on two directions: one is to identify proper biomarkers of immune checkpoint blockade in breast cancer, and the other is to combine therapies with PD-1/PD-L1 blockade antibodies to achieve optimal clinical outcomes.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Breast Neoplasms/therapy , Cancer Vaccines/therapeutic use , Immunotherapy , Antibodies, Monoclonal/immunology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cancer Vaccines/immunology , Female , Humans , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptor, ErbB-2/genetics
10.
PLoS Pathog ; 9(3): e1003232, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23555248

ABSTRACT

Human T-cell Immunoglobulin and Mucin-domain containing proteins (TIM1, 3, and 4) specifically bind phosphatidylserine (PS). TIM1 has been proposed to serve as a cellular receptor for hepatitis A virus and Ebola virus and as an entry factor for dengue virus. Here we show that TIM1 promotes infection of retroviruses and virus-like particles (VLPs) pseudotyped with a range of viral entry proteins, in particular those from the filovirus, flavivirus, New World arenavirus and alphavirus families. TIM1 also robustly enhanced the infection of replication-competent viruses from the same families, including dengue, Tacaribe, Sindbis and Ross River viruses. All interactions between TIM1 and pseudoviruses or VLPs were PS-mediated, as demonstrated with liposome blocking and TIM1 mutagenesis experiments. In addition, other PS-binding proteins, such as Axl and TIM4, promoted infection similarly to TIM1. Finally, the blocking of PS receptors on macrophages inhibited the entry of Ebola VLPs, suggesting that PS receptors can contribute to infection in physiologically relevant cells. Notably, infection mediated by the entry proteins of Lassa fever virus, influenza A virus and SARS coronavirus was largely unaffected by TIM1 expression. Taken together our data show that TIM1 and related PS-binding proteins promote infection of diverse families of enveloped viruses, and may therefore be useful targets for broad-spectrum antiviral therapies.


Subject(s)
Guanine Nucleotide Exchange Factors/metabolism , Host-Pathogen Interactions , Phosphatidylserines/metabolism , Proto-Oncogene Proteins/metabolism , Virus Diseases/metabolism , Viruses/pathogenicity , Animals , Antiviral Agents/pharmacology , Capsid , Cell Line , Dogs , Humans , Macrophages/metabolism , Macrophages/virology , Mice , Receptors, Virus/metabolism , Rho Guanine Nucleotide Exchange Factors , Viral Envelope Proteins , Virion/metabolism , Virus Diseases/virology , Virus Internalization
11.
Cell Chem Biol ; 31(4): 776-791.e7, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-37751743

ABSTRACT

The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.

12.
Parasit Vectors ; 16(1): 92, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882771

ABSTRACT

BACKGROUND: Chilodonella uncinata is an aerobic ciliate capable of switching between being free-living and parasitic on fish fins and gills, causing tissue damage and host mortality. It is widely used as a model organism for genetic studies, but its mitochondrial metabolism has never been studied. Therefore, we aimed to describe the morphological features and metabolic characteristics of its mitochondria. METHODS: Fluorescence staining and transmission electron microscopy (TEM) were used to observe the morphology of mitochondria. Single-cell transcriptome data of C. uncinata were annotated by the Clusters of Orthologous Genes (COG) database. Meanwhile, the metabolic pathways were constructed based on the transcriptomes. The phylogenetic analysis was also made based on the sequenced cytochrome c oxidase subunit 1 (COX1) gene. RESULTS: Mitochondria were stained red using Mito-tracker Red staining and were stained slightly blue by DAPI dye. The cristae and double membrane structures of the mitochondria were observed by TEM. Besides, many lipid droplets were evenly distributed around the macronucleus. A total of 2594 unigenes were assigned to 23 functional classifications of COG. Mitochondrial metabolic pathways were depicted. The mitochondria contained enzymes for the complete tricarboxylic acid (TCA) cycle, fatty acid metabolism, amino acid metabolism, and cytochrome-based electron transport chain (ETC), but only partial enzymes involved in the iron-sulfur clusters (ISCs). CONCLUSIONS: Our results showed that C. uncinata possess typical mitochondria. Stored lipid droplets inside mitochondria may be the energy storage of C. uncinata that helps its transmission from a free-living to a parasitic lifestyle. These findings also have improved our knowledge of the mitochondrial metabolism of C. uncinata and increased the volume of molecular data for future studies of this facultative parasite.


Subject(s)
Alveolata , Ciliophora , Parasites , Animals , Phylogeny , Ciliophora/genetics , Mitochondria
13.
Nat Commun ; 14(1): 2806, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37193698

ABSTRACT

Activation of the cGAS/STING innate immunity pathway is essential and effective for anti-tumor immunotherapy. However, it remains largely elusive how tumor-intrinsic cGAS signaling is suppressed to facilitate tumorigenesis by escaping immune surveillance. Here, we report that the protein arginine methyltransferase, PRMT1, methylates cGAS at the conserved Arg133 residue, which prevents cGAS dimerization and suppresses the cGAS/STING signaling in cancer cells. Notably, genetic or pharmaceutical ablation of PRMT1 leads to activation of cGAS/STING-dependent DNA sensing signaling, and robustly elevates the transcription of type I and II interferon response genes. As such, PRMT1 inhibition elevates tumor-infiltrating lymphocytes in a cGAS-dependent manner, and promotes tumoral PD-L1 expression. Thus, combination therapy of PRMT1 inhibitor with anti-PD-1 antibody augments the anti-tumor therapeutic efficacy in vivo. Our study therefore defines the PRMT1/cGAS/PD-L1 regulatory axis as a critical factor in determining immune surveillance efficacy, which serves as a promising therapeutic target for boosting tumor immunity.


Subject(s)
B7-H1 Antigen , Immunity, Innate , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Methylation , Immunity, Innate/genetics , Nucleotidyltransferases/metabolism , Signal Transduction/genetics , Methyltransferases/metabolism
14.
Front Immunol ; 14: 1237715, 2023.
Article in English | MEDLINE | ID: mdl-37771579

ABSTRACT

CX3CL1 secreted in the tumor microenvironment serves as a chemoattractant playing a critical role in metastasis of CX3CR1 expressing cancer cells. CX3CR1 can be expressed in both cancer and immune-inhibitory myeloid cells to facilitate their migration. We generated a novel monoclonal antibody against mouse CX3CR1 that binds to CX3CR1 and blocks the CX3CL1-CX3CR1 interaction. We next explored the immune evasion strategies implemented by the CX3CL1-CX3CR1 axis and find that it initiates a resistance program in cancer cells that results in 1) facilitation of tumor cell migration, 2) secretion of soluble mediators to generate a pro-metastatic niche, 3) secretion of soluble mediators to attract myeloid populations, and 4) generation of tumor-inflammasome. The CX3CR1 monoclonal antibody reduces migration of tumor cells and decreases secretion of immune suppressive soluble mediators by tumor cells. In combination with anti-PD-1 immunotherapy, this CX3CR1 monoclonal antibody enhances survival in an immunocompetent mouse colon carcinoma model through a decrease in tumor-promoting myeloid populations. Thus, this axis is involved in the mechanisms of resistance to anti-PD-1 immunotherapy and the combination therapy can overcome a portion of the resistance mechanisms to anti-PD-1.


Subject(s)
Antibodies, Monoclonal , Tumor Escape , Mice , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Chemokine CX3CL1/metabolism
15.
Nat Commun ; 14(1): 2859, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208329

ABSTRACT

The programmed cell death protein 1 (PD-1) is an inhibitory receptor on T cells and plays an important role in promoting cancer immune evasion. While ubiquitin E3 ligases regulating PD-1 stability have been reported, deubiquitinases governing PD-1 homeostasis to modulate tumor immunotherapy remain unknown. Here, we identify the ubiquitin-specific protease 5 (USP5) as a bona fide deubiquitinase for PD-1. Mechanistically, USP5 interacts with PD-1, leading to deubiquitination and stabilization of PD-1. Moreover, extracellular signal-regulated kinase (ERK) phosphorylates PD-1 at Thr234 and promotes PD-1 interaction with USP5. Conditional knockout of Usp5 in T cells increases the production of effector cytokines and retards tumor growth in mice. USP5 inhibition in combination with Trametinib or anti-CTLA-4 has an additive effect on suppressing tumor growth in mice. Together, this study describes a molecular mechanism of ERK/USP5-mediated regulation of PD-1 and identifies potential combinatorial therapeutic strategies for enhancing anti-tumor efficacy.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Programmed Cell Death 1 Receptor , Animals , Mice , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Homeostasis , Immunotherapy
16.
J Immunol ; 184(4): 1918-30, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-20083673

ABSTRACT

T cell/transmembrane, Ig, and mucin (TIM) proteins, identified using a congenic mouse model of asthma, critically regulate innate and adaptive immunity. TIM-1 and TIM-4 are receptors for phosphatidylserine (PtdSer), exposed on the surfaces of apoptotic cells. Herein, we show with structural and biological studies that TIM-3 is also a receptor for PtdSer that binds in a pocket on the N-terminal IgV domain in coordination with a calcium ion. The TIM-3/PtdSer structure is similar to that of TIM-4/PtdSer, reflecting a conserved PtdSer binding mode by TIM family members. Fibroblastic cells expressing mouse or human TIM-3 bound and phagocytosed apoptotic cells, with the BALB/c allelic variant of mouse TIM-3 showing a higher capacity than the congenic C.D2 Es-Hba-allelic variant. These functional differences were due to structural differences in the BC loop of the IgV domain of the TIM-3 polymorphic variants. In contrast to fibroblastic cells, T or B cells expressing TIM-3 formed conjugates with but failed to engulf apoptotic cells. Together these findings indicate that TIM-3-expressing cells can respond to apoptotic cells, but the consequence of TIM-3 engagement of PtdSer depends on the polymorphic variants of and type of cell expressing TIM-3. These findings establish a new paradigm for TIM proteins as PtdSer receptors and unify the function of the TIM gene family, which has been associated with asthma and autoimmunity and shown to modulate peripheral tolerance.


Subject(s)
Alleles , Apoptosis/immunology , Genetic Variation/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mucin-3/genetics , Phagocytosis/immunology , Phosphatidylserines/metabolism , Amino Acid Sequence , Animals , Apoptosis/genetics , Cell Line , Cell Line, Tumor , Hepatitis A Virus Cellular Receptor 2 , Humans , Membrane Proteins/physiology , Mice , Mice, Congenic , Mice, Inbred BALB C , Molecular Sequence Data , Mucin-3/metabolism , Mucin-3/physiology , Multigene Family/immunology , NIH 3T3 Cells , Phagocytosis/genetics
17.
J Immunol ; 185(9): 5225-35, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20889552

ABSTRACT

T cell Ig-like mucin-like-1 (TIM-1) is an important asthma susceptibility gene, but the immunological mechanisms by which TIM-1 functions remain uncertain. TIM-1 is also a receptor for phosphatidylserine (PtdSer), an important marker of cells undergoing programmed cell death, or apoptosis. We now demonstrate that NKT cells constitutively express TIM-1 and become activated by apoptotic cells expressing PtdSer. TIM-1 recognition of PtdSer induced NKT cell activation, proliferation, and cytokine production. Moreover, the induction of apoptosis in airway epithelial cells activated pulmonary NKT cells and unexpectedly resulted in airway hyperreactivity, a cardinal feature of asthma, in an NKT cell-dependent and TIM-1-dependent fashion. These results suggest that TIM-1 serves as a pattern recognition receptor on NKT cells that senses PtdSer on apoptotic cells as a damage-associated molecular pattern. Furthermore, these results provide evidence for a novel innate pathway that results in airway hyperreactivity and may help to explain how TIM-1 and NKT cells regulate asthma.


Subject(s)
Apoptosis/immunology , Asthma/immunology , Bronchial Hyperreactivity/immunology , Lymphocyte Activation/immunology , Membrane Proteins/immunology , Natural Killer T-Cells/immunology , Animals , Asthma/metabolism , Bronchial Hyperreactivity/metabolism , Cell Separation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Hepatitis A Virus Cellular Receptor 1 , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Confocal , Natural Killer T-Cells/metabolism , Phosphatidylserines/immunology , Reverse Transcriptase Polymerase Chain Reaction
18.
Nat Commun ; 13(1): 1700, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35361799

ABSTRACT

Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15-25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. Thus, our study reveals a potential combined therapeutic strategy to utilize a USP8 inhibitor and PD-1/PD-L1 blockade for enhancing anti-tumor efficacy.


Subject(s)
Endopeptidases , Endosomal Sorting Complexes Required for Transport , Immunotherapy , Neoplasms , Tumor Microenvironment , Ubiquitin Thiolesterase , Animals , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Endopeptidases/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Humans , Mice , Neoplasms/drug therapy , Neoplasms/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics
19.
Cancer Immunol Res ; 9(12): 1465-1475, 2021 12.
Article in English | MEDLINE | ID: mdl-34635486

ABSTRACT

PD-1 expression marks activated T cells susceptible to PD-1-mediated inhibition but not whether a PD-1-mediated signal is being delivered. Molecular predictors of response to PD-1 immune checkpoint blockade (ICB) are needed. We describe a monoclonal antibody (mAb) that detects PD-1 signaling through the detection of phosphorylation of the immunotyrosine switch motif (ITSM) in the intracellular tail of mouse and human PD-1 (phospho-PD-1). We showed PD-1+ tumor-infiltrating lymphocytes (TILs) in MC38 murine tumors had high phosphorylated PD-1, particularly in PD-1+TIM-3+ TILs. Upon PD-1 blockade, PD-1 phosphorylation was decreased in CD8+ TILs. Phospho-PD-1 increased in T cells from healthy human donors after PD-1 engagement and decreased in patients with Hodgkin lymphoma following ICB. These data demonstrate that phosphorylation of the ITSM motif of PD-1 marks dysfunctional T cells that may be rescued with PD-1 blockade. Detection of phospho-PD-1 in TILs is a potential biomarker for PD-1 immunotherapy responses.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Immunity/immunology , Immunotherapy/methods , Programmed Cell Death 1 Receptor/therapeutic use , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Humans , Mice , Phosphorylation , Signal Transduction
20.
Cancer Discov ; 11(6): 1524-1541, 2021 06.
Article in English | MEDLINE | ID: mdl-33589424

ABSTRACT

Immune checkpoint blockade (ICB) therapy revolutionized cancer treatment, but many patients with impaired MHC-I expression remain refractory. Here, we combined FACS-based genome-wide CRISPR screens with a data-mining approach to identify drugs that can upregulate MHC-I without inducing PD-L1. CRISPR screening identified TRAF3, a suppressor of the NFκB pathway, as a negative regulator of MHC-I but not PD-L1. The Traf3-knockout gene expression signature is associated with better survival in ICB-naïve patients with cancer and better ICB response. We then screened for drugs with similar transcriptional effects as this signature and identified Second Mitochondria-derived Activator of Caspase (SMAC) mimetics. We experimentally validated that the SMAC mimetic birinapant upregulates MHC-I, sensitizes cancer cells to T cell-dependent killing, and adds to ICB efficacy. Our findings provide preclinical rationale for treating tumors expressing low MHC-I expression with SMAC mimetics to enhance sensitivity to immunotherapy. The approach used in this study can be generalized to identify other drugs that enhance immunotherapy efficacy. SIGNIFICANCE: MHC-I loss or downregulation in cancer cells is a major mechanism of resistance to T cell-based immunotherapies. Our study reveals that birinapant may be used for patients with low baseline MHC-I to enhance ICB response. This represents promising immunotherapy opportunities given the biosafety profile of birinapant from multiple clinical trials.This article is highlighted in the In This Issue feature, p. 1307.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Neoplasms/drug therapy , B7-H1 Antigen/metabolism , Data Mining , Gene Expression Profiling , Histocompatibility Antigens Class I/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL