Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Mol Cell ; 84(3): 476-489.e10, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38211589

ABSTRACT

Pioneer transcription factors (TFs) regulate cell fate by establishing transcriptionally primed and active states. However, cell fate control requires the coordination of both lineage-specific gene activation and repression of alternative-lineage programs, a process that is poorly understood. Here, we demonstrate that the pioneer TF FOXA coordinates with PRDM1 TF to recruit nucleosome remodeling and deacetylation (NuRD) complexes and Polycomb repressive complexes (PRCs), which establish highly occupied, accessible nucleosome conformation with bivalent epigenetic states, thereby preventing precocious and alternative-lineage gene expression during human endoderm differentiation. Similarly, the pioneer TF OCT4 coordinates with PRDM14 to form bivalent enhancers and repress cell differentiation programs in human pluripotent stem cells, suggesting that this may be a common and critical function of pioneer TFs. We propose that pioneer and PRDM TFs coordinate to safeguard cell fate through epigenetic repression mechanisms.


Subject(s)
Nucleosomes , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Nucleosomes/genetics , Cell Differentiation/genetics , Polycomb-Group Proteins/metabolism , Epigenesis, Genetic
2.
Clin Exp Dermatol ; 47(12): 2318-2321, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36058553

ABSTRACT

We present a case of a 34-year-old man who developed a lesion over his posterior calf. We discuss the clinical and histopathological features, as well as relevant immunohistochemical markers. Click here for the corresponding questions to this CME article.


Subject(s)
Leg , Male , Humans , Adult
3.
STAR Protoc ; 5(3): 103221, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39083383

ABSTRACT

Inducible loss-of-function strategies are crucial for understanding gene function. However, creating inducible, multiple-gene knockout models is challenging and time-consuming. Here, we present a protocol for establishing a doxycycline-inducible CRISPR interference (CRISPRi) system to concurrently silence multiple genes in human induced pluripotent stem cells (hPSCs). We describe the steps for establishing host CRISPRi hPSCs, designing and cloning single-guide RNAs (sgRNAs) into a lentivirus plasmid, and establishing monoclonal CRISPRi hPSC lines transduced with sgRNAs. We also detail the procedures for selecting effective CRISPRi clones. For complete details on the use and execution of this protocol, please refer to Matsui et al.1.

4.
STAR Protoc ; 5(3): 103233, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39133612

ABSTRACT

Transcription factor (TF) gene knockout or knockdown experiments provide comprehensive downstream effects on gene regulation. However, distinguishing primary direct effects from secondary effects remains challenging. To assess the direct effect of TF binding events, we present a protocol for establishing a doxycycline (Dox)-inducible CRISPRd system in human pluripotent stem cells (hPSCs). We describe the steps for establishing CRISPRd host hPSCs, designing and preparing single-guide RNA (sgRNA) expression lentivirus vectors, generating CRISPRd hPSCs transduced with sgRNAs, and analyzing CRISPRd TF-block effects by chromatin immunoprecipitation (ChIP)-qPCR. For complete details on the use and execution of this protocol, please refer to Matsui et al.1.

5.
bioRxiv ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38405708

ABSTRACT

Modulation of neurotransmission is key for organismal responses to varying physiological contexts such as during infection, injury, or other stresses, as well as in learning and memory and for sensory adaptation. Roles for cell autonomous neuromodulatory mechanisms in these processes have been well described. The importance of cell non-autonomous pathways for inter-tissue signaling, such as gut-to-brain or glia-to-neuron, has emerged more recently, but the cellular mechanisms mediating such regulation remain comparatively unexplored. Glycoproteins and their G protein-coupled receptors (GPCRs) are well-established orchestrators of multi-tissue signaling events that govern diverse physiological processes through both cell-autonomous and cell non-autonomous regulation. Here, we show that follicle stimulating hormone receptor, FSHR-1, the sole Caenorhabditis elegans ortholog of mammalian glycoprotein hormone GPCRs, is important for cell non-autonomous modulation of synaptic transmission. Inhibition of fshr-1 expression reduces muscle contraction and leads to synaptic vesicle accumulation in cholinergic motor neurons. The neuromuscular and locomotor defects in fshr-1 loss-of-function mutants are associated with an underlying accumulation of synaptic vesicles, build-up of the synaptic vesicle priming factor UNC-10/RIM, and decreased synaptic vesicle release from cholinergic motor neurons. Restoration of FSHR-1 to the intestine is sufficient to restore neuromuscular activity and synaptic vesicle localization to fshr-1- deficient animals. Intestine-specific knockdown of FSHR-1 reduces neuromuscular function, indicating FSHR-1 is both necessary and sufficient in the intestine for its neuromuscular effects. Re-expression of FSHR-1 in other sites of endogenous expression, including glial cells and neurons, also restored some neuromuscular deficits, indicating potential cross-tissue regulation from these tissues as well. Genetic interaction studies provide evidence that downstream effectors gsa-1 / Gα S , acy-1 /adenylyl cyclase and sphk-1/ sphingosine kinase and glycoprotein hormone subunit orthologs, GPLA-1/GPA2 and GPLB-1/GPB5, are important for FSHR-1 modulation of the NMJ. Together, our results demonstrate that FSHR-1 modulation directs inter-tissue signaling systems, which promote synaptic vesicle release at neuromuscular synapses.

6.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-38162412

ABSTRACT

Quantitative imaging of synaptic vesicle localization and abundance using fluorescently labeled synaptic vesicle associated proteins like GFP::SNB-1 is a well-established method for measuring changes in synapse structure at neuromuscular junctions (NMJ) in C. elegans . To date, however, the ability to easily and reproducibly measure key parameters at the NMJ - maximum intensity, size of GFP::SNB-1 puncta, density of puncta - has relied on the use of expensive, customizable software that requires coding skills to modify, precluding widespread access and thus preventing standardization within the field. We carried out a comparative evaluation of a new, open-source Fiji puncta plugin versus traditional Igor-based analysis of GFP::SNB-1 imaging data taken of cholinergic motor neurons in the dorsal nerve cord of loss of function mutants in fshr-1 , which encodes a G protein-coupled receptor known to impact GFP::SNB-1 accumulation. We analyzed images taken on a widefield fluorescence microscope, as well as on a spinning disk confocal microscope. Our data demonstrate strong concordance between the differences in GFP::SNB-1 localization in fshr-1 mutants compared to wild type worms across both analysis platforms (Fiji and Igor), as well as across microscope types (widefield and confocal). These data also agree with previously published observations related to synapse number and GFP::SNB-1 intensity in fshr-1 and wild type worms. Based on these findings, we conclude that the Fiji platform is viable as a method for analyzing synaptic vesicle localization and abundance at cholinergic dorsal nerve cord motor NMJs and expect the Fiji puncta plugin to be of broad utility in imaging across a variety of imaging platforms and synaptic markers.

7.
Cutis ; 112(3): 139-145, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37903388

ABSTRACT

The practice of body piercing has been present in many cultures worldwide for centuries, whether for religious or spiritual reasons or as a form of self-expression. In recent years, body piercings have become increasingly popular in all genders, with the most common sites being the ears, mouth, nose, eyebrows, nipples, navel, and genitals. However, despite the widespread utilization of piercings, a comprehensive literature review of associated complications is lacking. This scoping review aims to summarize the literature regarding complications associated with cutaneous and mucosal piercings. Given that body piercing has become more prevalent in recent years and that studies have noted an increase in a variety of piercing-induced complications, it is of utmost importance that piercing salons have proper hygiene practices in place and that patients are aware of the multitude of potential complications that can arise.


Subject(s)
Body Piercing , Humans , Male , Female , Body Piercing/adverse effects , Mouth , Face
8.
Cancer Res Commun ; 2(6): 391-401, 2022 06.
Article in English | MEDLINE | ID: mdl-36046124

ABSTRACT

Current molecular liquid biopsy assays to detect recurrence or monitor response to treatment require sophisticated technology, highly trained personnel, and a turnaround time of weeks. We describe the development and technical validation of an automated Liquid Biopsy for Breast Cancer Methylation (LBx-BCM) prototype, a DNA methylation detection cartridge assay that is simple to perform and quantitatively detects nine methylated markers within 4.5 h. LBx-BCM demonstrated high interassay reproducibility when analyzing exogenous methylated DNA (75-300 DNA copies) spiked into plasma (Coefficient of Variation, CV = 7.1 - 10.9%) and serum (CV = 19.1 - 36.1%). It also demonstrated high interuser reproducibility (Spearman r = 0.887, P < 0.0001) when samples of metastatic breast cancer (MBC, N = 11) and normal control (N = 4) were evaluated independently by two users. Analyses of interplatform reproducibility indicated very high concordance between LBx-BCM and the reference assay, cMethDNA, among 66 paired plasma samples (MBC N = 40, controls N = 26; Spearman r = 0.891; 95% CI = 0.825 - 0.933, P< 0.0001). LBx-BCM achieved a ROC AUC = 0.909 (95% CI = 0.836 - 0.982), 83% sensitivity and 92% specificity; cMethDNA achieved a ROC AUC = 0.896 (95% CI = 0.817 - 0.974), 83% sensitivity and 92% specificity in test set samples. The automated LBx-BCM cartridge prototype is fast, with performance levels equivalent to the highly sensitive, manual cMethDNA method. Future prospective clinical studies will evaluate LBx-BCM detection sensitivity and its ability to monitor therapeutic response during treatment for advanced breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Reproducibility of Results , DNA Methylation/genetics , DNA , Liquid Biopsy
SELECTION OF CITATIONS
SEARCH DETAIL