Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Phys Rev Lett ; 130(18): 186403, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37204907

ABSTRACT

We reveal how symmetry-protected nodal points in topological semimetals may be promoted to pairs of generically stable exceptional points (EPs) by symmetry-breaking fluctuations at the onset of long-range order. This intriguing interplay between non-Hermitian (NH) topology and spontaneous symmetry breaking is exemplified by a magnetic NH Weyl phase spontaneously emerging at the surface of a strongly correlated three-dimensional topological insulator, when entering the ferromagnetic regime from a high-temperature paramagnetic phase. Here, electronic excitations with opposite spin acquire significantly different lifetimes, thus giving rise to an anti-Hermitian structure in spin that is incompatible with the chiral spin texture of the nodal surface states, and hence facilitate the spontaneous formation of EPs. We present numerical evidence of this phenomenon by solving a microscopic multiband Hubbard model nonperturbatively in the framework of dynamical mean-field theory.

2.
Phys Rev Lett ; 124(1): 010401, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31976708

ABSTRACT

Motivated by the outstanding challenge of realizing low-temperature states of quantum matter in synthetic materials, we propose and study an experimentally feasible protocol for preparing topological states such as Chern insulators. By definition, such (nonsymmetry protected) topological phases cannot be attained without going through a phase transition in a closed system, largely preventing their preparation in coherent dynamics. To overcome this fundamental caveat, we propose to couple the target system to a conjugate system, so as to prepare a symmetry protected topological phase in an extended system by intermittently breaking the protecting symmetry. Finally, the decoupled conjugate system is discarded, thus projecting onto the desired topological state in the target system. By construction, this protocol may be immediately generalized to the class of invertible topological phases, characterized by the existence of an inverse topological order. We illustrate our findings with microscopic simulations on an experimentally realistic Chern insulator model of ultracold fermionic atoms in a driven spin-dependent hexagonal optical lattice.

3.
Phys Rev Lett ; 124(24): 240404, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32639831

ABSTRACT

The observable properties of topological quantum matter are often described by topological field theories. Here, we demonstrate that this principle extends beyond thermal equilibrium. To this end, we construct a model of two-dimensional driven open dynamics with a Chern insulator steady state. Within a Keldysh field theory approach, we show that under mild assumptions-particle number conservation and purity of the stationary state-an abelian Chern-Simons theory describes its response to external perturbations. As a corollary, we predict chiral edge modes stabilized by a dissipative bulk.

4.
Phys Rev Lett ; 114(18): 185701, 2015 May 08.
Article in English | MEDLINE | ID: mdl-26001010

ABSTRACT

Topological quantum phase transitions are characterized by changes in global topological invariants. These invariants classify many-body systems beyond the conventional paradigm of local order parameters describing spontaneous symmetry breaking. For noninteracting electrons, it is well understood that such transitions are continuous and always accompanied by a gap closing in the energy spectrum, given that the symmetries protecting the topological phase are maintained. Here, we demonstrate that a sufficiently strong electron-electron interaction can fundamentally change the situation: we discover a topological quantum phase transition of first-order character in the genuine thermodynamic sense that occurs without a gap closing. Our theoretical study reveals the existence of a quantum critical endpoint associated with an orbital instability on the transition line between a 2D topological insulator and a trivial band insulator. Remarkably, this phenomenon entails unambiguous signatures related to the orbital occupations that can be detected experimentally.

5.
Nat Commun ; 7: 12280, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27481540

ABSTRACT

The identification of fractionalized excitations, such as Majorana quasi-particles, would be a striking signal of the realization of exotic quantum states of matter. While the paramount demonstration of such excitations would be a probe of their non-Abelian statistics via controlled braiding operations, alternative proposals exist that may be easier to access experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively different from the behaviour of a conventional superconductor, which can be detected in cold atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted by an extra site, which gives rise to super-exchange coupling between two Majorana-bound states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a characteristic 8π periodicity of the Josephson current. The visibility of the 8π periodicity of the Josephson current is then studied including the effects of dephasing and particle losses.

SELECTION OF CITATIONS
SEARCH DETAIL