Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 114(46): 12338-12343, 2017 11 14.
Article in English | MEDLINE | ID: mdl-29087298

ABSTRACT

Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period's discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing-rather than merely cost savings-again depends on the ethical approach to valuing population.


Subject(s)
Family Planning Services/ethics , Models, Economic , Population Forecast , Population Growth , Air Pollution/statistics & numerical data , Carbon Dioxide/analysis , Climate Change , Family Planning Services/trends , Female , Humans , Male , Policy
2.
Proc Natl Acad Sci U S A ; 112(52): 15827-32, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26644560

ABSTRACT

Integrated assessment models of climate and the economy provide estimates of the social cost of carbon and inform climate policy. We create a variant of the Regional Integrated model of Climate and the Economy (RICE)-a regionally disaggregated version of the Dynamic Integrated model of Climate and the Economy (DICE)-in which we introduce a more fine-grained representation of economic inequalities within the model's regions. This allows us to model the common observation that climate change impacts are not evenly distributed within regions and that poorer people are more vulnerable than the rest of the population. Our results suggest that this is important to the social cost of carbon-as significant, potentially, for the optimal carbon price as the debate between Stern and Nordhaus on discounting.


Subject(s)
Carbon/economics , Carbon/metabolism , Climate Change , Climate , Algorithms , Conservation of Natural Resources/economics , Conservation of Natural Resources/methods , Conservation of Natural Resources/trends , Forecasting , Models, Economic , Models, Theoretical
4.
Nat Clim Chang ; 11(10): 827-833, 2021 Oct.
Article in English | MEDLINE | ID: mdl-38239924

ABSTRACT

Tools are needed to benchmark carbon emissions and pledges against criteria of equity and fairness. However, standard economic approaches, which use a transparent optimization framework, ignore equity. Models that do include equity benchmarks exist, but often use opaque methodologies. Here we propose a utilitarian benchmark computed in a transparent optimization framework, which could usefully inform the equity benchmark debate. Implementing the utilitarian benchmark, which we see as ethically minimal and conceptually parsimonious, in two leading climate-economy models allows for calculation of the optimal allocation of future emissions. We compare this optimum with historical emissions and initial nationally determined contributions. Compared with cost minimization, utilitarian optimization features better outcomes for human development, equity and the climate. Peak temperature is lower under utilitarianism because it reduces the human development cost of global mitigation. Utilitarianism therefore is a promising inclusion to a set of benchmarks for future explorations of climate equity.

SELECTION OF CITATIONS
SEARCH DETAIL