Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739452

ABSTRACT

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Subject(s)
Acute Kidney Injury , Intercellular Adhesion Molecule-1 , Kidney , MicroRNAs , Rats, Sprague-Dawley , Renal Insufficiency, Chronic , Reperfusion Injury , Animals , MicroRNAs/metabolism , MicroRNAs/genetics , Male , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Acute Kidney Injury/genetics , Acute Kidney Injury/pathology , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Kidney/pathology , Kidney/blood supply , Kidney/metabolism , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Nitric Oxide Synthase Type III/metabolism , Rats , Disease Models, Animal , Disease Progression , Endothelial Cells/metabolism
2.
Am J Hematol ; 99(4): 577-585, 2024 04.
Article in English | MEDLINE | ID: mdl-38291601

ABSTRACT

In the general population, individuals with an inherited thrombophilia have a higher risk of thrombosis, but the effect of inherited thrombophilia on the risk of cancer-associated venous thromboembolism (VTE) remains controversial. Our objective was to determine the risk of VTE in cancer patients with inherited thrombophilia. We conducted a systematic review and meta-analysis of studies reporting on VTE after a cancer diagnosis in adult patients who were tested for inherited thrombophilia. In September 2022, we searched Medline, EMBASE, and Cochrane Central. Two reviewers screened the abstracts/full texts and assessed study quality using the Quality in Prognostic Studies tool. We used Mantel-Haenszel random-effects models to estimate pooled odds ratios (OR) of VTE and 95% confidence intervals (95%CI). We included 37 and 28 studies in the systematic review and meta-analysis, respectively. Most studies focused on specific cancer types and hematologic malignancies were rare. The risk of VTE was significantly higher in cancer patients with non-O (compared with O) blood types (OR: 1.56 [95% CI: 1.28-1.90]), Factor V Leiden, and Prothrombin Factor II G20210A mutations compared with wild types (OR: 2.28 [95% CI: 1.51-3.48] and 2.14 [95% CI: 1.14-4.03], respectively). Additionally, heterozygous and homozygous methylenetetrahydrofolate reductase C677T had ORs of 1.50 (95% CI: 1.00-2.24) and 1.38 (95% CI: 0.87-2.22), respectively. Among those with Plasminogen-Activator Inhibitor-1 4G/5G, Vascular Endothelial Growth Factor (VEGF) A C634G, and VEGF C2578A mutations, there was no significant association with VTE. In conclusion, this meta-analysis provided evidence that non-O blood types, Factor V Leiden, and Prothrombin Factor II G20210A mutations are important genetic risk factors for VTE in cancer patients.


Subject(s)
Neoplasms , Thrombophilia , Venous Thromboembolism , Adult , Humans , Venous Thromboembolism/genetics , Vascular Endothelial Growth Factor A , Prothrombin/genetics , Thrombophilia/genetics , Mutation , Neoplasms/complications , Neoplasms/genetics , Factor V/genetics , Risk Factors
3.
Can J Physiol Pharmacol ; 102(7): 396-407, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38669699

ABSTRACT

Kidney anion exchanger 1 (kAE1) is an isoform of the AE1 protein encoded by the SLC4A1 gene. It is a basolateral membrane protein expressed by α-intercalated cells in the connecting tubules and collecting duct of the kidney. Its main function is to exchange bicarbonate and chloride ions between the blood and urine to maintain blood pH at physiological threshold. The kAE1 protein undergoes multiple post-translational modifications such as phosphorylation and ubiquitination and interacts with many different proteins such as claudin-4 and carbonic anhydrase II. Mutations in the gene may lead to the development of distal renal tubular acidosis, characterized by the failure to acidify the urine, which may result in nephrocalcinosis and in more severe cases, renal failure. In this review, we discuss the structure and function of kAE1, its post-translational modifications, and protein-protein interactions. Finally, we discuss insights gained from the study of kAE1 mutations in humans and in mice.


Subject(s)
Anion Exchange Protein 1, Erythrocyte , Protein Processing, Post-Translational , Animals , Humans , Anion Exchange Protein 1, Erythrocyte/genetics , Anion Exchange Protein 1, Erythrocyte/metabolism , Mutation , Protein Processing, Post-Translational/genetics
4.
Cytotherapy ; 25(9): 939-945, 2023 09.
Article in English | MEDLINE | ID: mdl-37191614

ABSTRACT

BACKGROUND AIMS: Interest in cell-based therapy using extracellular vesicles (EVs) is intensifying, building upon promising preclinical research and a handful of published clinical studies. Registered clinical trials remain small, heterogeneous in design and underpowered to determine safety and efficacy on their own. A scoping review of registered studies can identify opportunities to pool data and perform meta-analysis. METHODS: Registered trials were identified by searching clinical trial databases (Clinicaltrials.gov, the World Health Organization International Clinical Trials Registry Platform and the Chinese Clinical Trial Registry) on June 10, 2022. RESULTS: Seventy-three trials were identified and included for analysis. Mesenchymal stromal cells (MSCs) were the most common cell type from which EVs were derived (49 studies, 67%). Among the 49 identified MSC-EV studies, 25 were controlled trials (51%) with a combined total of 3094 participants anticipated to receive MSC-derived EVs (2225 in controlled studies). Although EVs are being administered to treat a broad range of conditions, trials treating patients with coronavirus disease-2019 and/or acute respiratory distress syndrome were observed most commonly. Despite heterogeneity between studies, we anticipate that at least some of the studies could be combined in meaningful meta-analysis and that a combined sample size of 1000 patients would provide the ability to detect a ≥5% difference in mortality with MSC-EVs compared to controls and could be achieved by December 2023. CONCLUSIONS: This scoping review identifies potential barriers that may stall clinical translation of EV-based treatment, and our analysis calls for more standardized product characterization, use of quantifiable product quality attributes and consistent outcome reporting in future clinical trials.


Subject(s)
COVID-19 , Extracellular Vesicles , Humans , COVID-19/therapy , Extracellular Vesicles/metabolism , Research Design , Cell- and Tissue-Based Therapy
5.
Toxicol Pathol ; 51(4): 160-175, 2023 06.
Article in English | MEDLINE | ID: mdl-37632371

ABSTRACT

Assessment of hypertensive tubulopathy for more than fifty animal models of hypertension in experimental pathology employs criteria that do not correspond to lesional descriptors for tubular lesions in clinical pathology. We provide a critical appraisal of experimental hypertension with the same approach used to estimate hypertensive renal tubulopathy in humans. Four models with different pathogenesis of hypertension were analyzed-chronic angiotensin (Ang) II-infused and renin-overexpressing (TTRhRen) mice, spontaneously hypertensive (SHR), and Goldblatt two-kidney one-clip (2K1C) rats. Mouse models, SHR, and the nonclipped kidney in 2K1C rats had no regular signs of hypertensive tubulopathy. Histopathology in animals was mild and limited to variations in the volume density of tubular lumen and epithelium, interstitial space, and interstitial collagen. Affected kidneys in animals demonstrated lesion values that are significantly different compared with healthy controls but correspond to mild damage if compared with hypertensive humans. The most substantial human-like hypertensive tubulopathy was detected in the clipped kidney of 2K1C rats. For the first time, our study demonstrated the regular presence of chronic progressive nephropathy (CPN) in relatively young mice and rats with induced hypertension. Because CPN may confound the assessment of rodent models of hypertension, proliferative markers should be used to verify nonhypertensive tubulopathy.


Subject(s)
Hypertension , Pathology, Clinical , Humans , Rats , Mice , Animals , Rats, Inbred SHR , Kidney , Disease Models, Animal
6.
Am J Respir Crit Care Med ; 205(10): 1186-1201, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35286238

ABSTRACT

Rationale: Bronchopulmonary dysplasia, a chronic respiratory condition originating from preterm birth, is associated with abnormal neurodevelopment. Currently, there is an absence of effective therapies for bronchopulmonary dysplasia and its associated brain injury. In preclinical trials, mesenchymal stromal cell therapies demonstrate promise as a therapeutic alternative for bronchopulmonary dysplasia. Objectives: To investigate whether a multifactorial neonatal mouse model of lung injury perturbs neural progenitor cell function and to assess the ability of human umbilical cord-derived mesenchymal stromal cell extracellular vesicles to mitigate pulmonary and neurologic injury. Methods: Mice at Postnatal Day 7 or 8 were injected intraperitoneally with LPS and ventilated with 40% oxygen at Postnatal Day 9 or 10 for 8 hours. Treated animals received umbilical cord-mesenchymal stromal cell-derived extracellular vesicles intratracheally preceding ventilation. Lung morphology, vascularity, and inflammation were quantified. Neural progenitor cells were isolated from the subventricular zone and hippocampus and assessed for self-renewal, in vitro differentiation ability, and transcriptional profiles. Measurements and Main Results: The multifactorial lung injury model produced alveolar and vascular rarefaction mimicking bronchopulmonary dysplasia. Neural progenitor cells from lung injury mice showed reduced neurosphere and oligodendrocyte formation, as well as inflammatory transcriptional signatures. Mice treated with mesenchymal stromal cell extracellular vesicles showed significant improvement in lung architecture, vessel formation, and inflammatory modulation. In addition, we observed significantly increased in vitro neurosphere formation and altered neural progenitor cell transcriptional signatures. Conclusions: Our multifactorial lung injury model impairs neural progenitor cell function. Observed pulmonary and neurologic alterations are mitigated by intratracheal treatment with mesenchymal stromal cell-derived extracellular vesicles.


Subject(s)
Bronchopulmonary Dysplasia , Extracellular Vesicles , Lung Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Premature Birth , Animals , Bronchopulmonary Dysplasia/therapy , Female , Humans , Infant, Newborn , Lung , Lung Injury/therapy , Mice , Pregnancy
7.
Int J Mol Sci ; 24(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36902363

ABSTRACT

Hypertension and diabetes induce vascular injury through processes that are not fully understood. Changes in extracellular vesicle (EV) composition could provide novel insights. Here, we examined the protein composition of circulating EVs from hypertensive, diabetic and healthy mice. EVs were isolated from transgenic mice overexpressing human renin in the liver (TtRhRen, hypertensive), OVE26 type 1 diabetic mice and wild-type (WT) mice. Protein content was analyzed using liquid chromatography-mass spectrometry. We identified 544 independent proteins, of which 408 were found in all groups, 34 were exclusive to WT, 16 were exclusive to OVE26 and 5 were exclusive to TTRhRen mice. Amongst the differentially expressed proteins, haptoglobin (HPT) was upregulated and ankyrin-1 (ANK1) was downregulated in OVE26 and TtRhRen mice compared with WT controls. Conversely, TSP4 and Co3A1 were upregulated and SAA4 was downregulated exclusively in diabetic mice; and PPN was upregulated and SPTB1 and SPTA1 were downregulated in hypertensive mice, compared to WT mice. Ingenuity pathway analysis identified enrichment in proteins associated with SNARE signaling, the complement system and NAD homeostasis in EVs from diabetic mice. Conversely, in EVs from hypertensive mice, there was enrichment in semaphroin and Rho signaling. Further analysis of these changes may improve understanding of vascular injury in hypertension and diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Extracellular Vesicles , Hypertension , Vascular System Injuries , Humans , Mice , Animals , Proteome , Mice, Transgenic
8.
Biochem Biophys Res Commun ; 624: 127-133, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35940125

ABSTRACT

Podocytes are insulin-sensitive cells, and their loss is critical in diabetic nephropathy (DN) progression that could lead to end-stage kidney disease. We have previously shown that decreased DUSP4 expression caused elevated JNK phosphorylation in the diabetic kidney and worsened DN characteristics. Yet, the role of DUSP4 in diabetic podocyte insulin resistance and the progression of DN remains unclear. Here, we report that HG-exposed podocytes exhibited reduced DUSP4 expression, increased phosphorylation of JNK and serine 307 of IRS1 as well as Nox4 expression, while decreasing insulin signaling actions. DUSP4 overexpression, JNK and Nox1/4 inhibition prevented HG-induced serine 307 phosphorylation of IRS1 and restored insulin actions. Diabetic mice showed renal dysfunction and insulin resistance, characteristics that were exacerbated in diabetic DUSP4 deficient mice due to Nox1/4 upregulation. Thus, our results demonstrated that diabetes-induced reduction of DUSP4 leads to JNK activation and elevated Nox4 expression, which contributes to podocyte dysfunction, insulin resistance and progression of DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Insulin Resistance , Podocytes , Animals , Apoptosis , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Glucose/metabolism , Insulin/metabolism , Mice , Oxidative Stress , Podocytes/metabolism , Serine/metabolism
9.
Clin Sci (Lond) ; 136(24): 1873-1875, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36545930

ABSTRACT

In a recent article published in Clinical Science, James-Allan et al. examined the effect of small extracellular vesicles (EVs) on glucose intolerance in pregnancy. This editorial commentary summarizes major findings from this study and discusses the impact on our understanding of the role of EVs in pregnancy.


Subject(s)
Diabetes, Gestational , Extracellular Vesicles , Glucose Intolerance , Pregnancy , Female , Humans
10.
Adv Exp Med Biol ; 1362: 85-98, 2022.
Article in English | MEDLINE | ID: mdl-35288875

ABSTRACT

Present in all cells, inorganic phosphate (Pi) is involved in regulating a wide range of fundamental cellular processes including energy homeostasis; nucleotide, nucleic acid and phospholipid metabolism; and signalling through protein phosphorylation events. However, at excess concentrations, Pi is known to exert adverse effects on cells, particularly on endothelial cells. This review gives a brief overview of the functional effects of elevated extracellular Pi concentration on mammalian cells and tissues in vitro and in vivo. We then address the cardiovascular effects of elevated extracellular Pi concentration in vitro and in vivo, emphasising that effects have been reported in vivo even within the top end of normal range for plasma [Pi]. Cardiovascular sites of action of Pi are then considered, with a focus on the role of soluble Pi in endothelial dysfunction. The regulation of intracellular Pi concentration by Pi transporter proteins in mammalian cells is described, followed by consideration in detail of how changes in Pi concentration are sensed in mammalian cells and how these trigger functional effects in endothelial cells.


Subject(s)
Endothelial Cells , Phosphates , Animals , Endothelial Cells/metabolism , Homeostasis , Phosphates/metabolism , Phosphorylation , Signal Transduction
11.
Int J Mol Sci ; 23(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35563365

ABSTRACT

Gestational diabetes mellitus (GDM) increases risk of adverse pregnancy outcomes and maternal cardiovascular complications. It is widely believed that maternal endothelial dysfunction is a critical determinant of these risks, however, connections to maternal cardiac dysfunction and mechanisms of pathogenesis are unclear. Circulating extracellular vesicles (EVs) are emerging biomarkers that may provide insights into the pathogenesis of GDM. We examined the impact of GDM on maternal cardiac and vascular health in a rat model of diet-induced obesity-associated GDM. We observed a >3-fold increase in circulating levels of endothelial EVs (p < 0.01) and von Willebrand factor (p < 0.001) in GDM rats. A significant increase in mitochondrial DNA (mtDNA) within circulating extracellular vesicles was also observed suggesting possible mitochondrial dysfunction in the vasculature. This was supported by nicotinamide adenine dinucleotide deficiency in aortas of GDM mice. GDM was also associated with cardiac remodeling (increased LV mass) and a marked impairment in maternal diastolic function (increased isovolumetric relaxation time [IVRT], p < 0.01). Finally, we observed a strong positive correlation between endothelial EV levels and IVRT (r = 0.57, p < 0.05). In summary, we observed maternal vascular and cardiac dysfunction in rodent GDM accompanied by increased circulating endothelial EVs and EV-associated mitochondrial DNA. Our study highlights a novel method for assessment of vascular injury in GDM and highlights vascular mitochondrial injury as a possible therapeutic target.


Subject(s)
Diabetes, Gestational , Extracellular Vesicles , Heart Diseases , Animals , DNA, Mitochondrial/genetics , Diabetes, Gestational/genetics , Female , Humans , Mice , Pregnancy , Rats , Rodentia/genetics
12.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36499475

ABSTRACT

Elevated circulating platelet-derived extracellular vesicles (pEVs) have been associated with arterial hypertension. The role of hypertension-mediated organ damage (HMOD) to induce EV release is still unknown. We studied the micro- and macro-vascular changes (retinal vascular density and pulse wave velocity), endothelial function (flow-mediated vasodilation of brachial artery and finger plethysmography), and assessed the psychosocial status (anxiety and depression) in hypertensive patients to determine their relationship with EV release. Pulse wave velocity showed a significant positive correlation with pEVs (r = 0.33; p = 0.01). Systolic blood pressure (SBP) negatively correlated with retinal vascularity. The superficial retinal vascular plexus density in the whole image showed a significant negative correlation with 24 h SBP (r = −0.38, p < 0.01), day-SBP (r = −0.35, p = 0.01), and night-SBP (r = −0.27, p = 0.04). pEVs did not show significant associations with microvascular damage (retinal vascular density), endothelial function (flow-mediated vasodilation of brachial artery and finger plethysmography), or psychosocial status (anxiety and depression). Our results indicate that the pEV levels were associated with macrovascular damage measured by PWV, whereas no significant association between pEVs and microvascular damage, endothelial function, or emotional status could be detected. The potential utility of pEV in clinical practice in the context of HMOD may be limited to macrovascular changes.


Subject(s)
Extracellular Vesicles , Hypertension , Humans , Pulse Wave Analysis , Brachial Artery , Blood Pressure/physiology
13.
Int J Mol Sci ; 23(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36142436

ABSTRACT

Elevated circulating platelet-derived extracellular vesicles (EVs) have been reported in conditions associated with thrombotic risk. The present study aimed to assess the relationship between circulating platelet-derived EV levels, cardiovascular risk stratification and vascular organ damage, as assessed by pulse wave velocity (PWV). A total of 92 patients were included in the present analysis. Platelet EV were evaluated by flow cytometry (CD41+/Annexin v+). The cardiovascular risk was determined using the 2021 ESC guideline stratification and SCORE2 and SCORE-OP. PWV was performed as a surrogate to assess macrovascular damage. Risk stratification revealed significant group differences in EV levels (ANOVA, p = 0.04). Post hoc analysis demonstrated significantly higher levels of EVs in the very high-risk group compared with the young participants (12.53 ± 8.69 vs. 7.51 ± 4.67 EV/µL, p = 0.03). Linear regression models showed SCORE2 and SCORE-OP (p = 0.04) was a predictor of EV levels. EVs showed a significant association with macrovascular organ damage measured by PWV (p = 0.01). PWV progressively increased with more severe cardiovascular risk (p < 0.001) and was also associated with SCORE2 and SCORE-OP (p < 0.001). Within the pooled group of subjects with low to moderate risk and young participants (<40 years), those with EV levels in the highest tertile had a trend towards higher nocturnal blood pressure levels, fasting glucose concentration, lipid levels, homocysteine and PWV. Levels of platelet-derived EVs were highest in those patients with very high CV risk. Within a pooled group of patients with low to moderate risk, an unfavourable cardiometabolic profile was present with higher EV levels.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Hypertension , Annexin A5 , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/etiology , Glucose , Heart Disease Risk Factors , Homocysteine , Humans , Lipids , Pulse Wave Analysis , Risk Factors
14.
Diabetologia ; 64(7): 1527-1537, 2021 07.
Article in English | MEDLINE | ID: mdl-33839801

ABSTRACT

AIMS/HYPOTHESIS: Maternal hyperglycaemia alone does not explain the incidence of large offspring amongst women with type 1 diabetes. The objective of the study was to determine if there is an association between placental function, as measured by angiogenic factors, and offspring birthweight z score in women with type 1 diabetes. METHODS: This cohort study included samples from 157 Continuous Glucose Monitoring in Pregnant Women with Type 1 Diabetes (CONCEPTT) trial participants. Correlations were estimated between birthweight z score and placental growth factor (PlGF) and soluble fms-like tyrosine kinase (sFlt-1) levels measured at baseline and at 24 and 34 weeks of gestation. Linear regression was used to assess the relationship between birthweight z score and placental health, as measured by PlGF and sFlt-1/PlGF ratio, stratified by glycaemic status (continuous glucose monitoring and HbA1c measures) and adjusted for potential confounders of maternal BMI, smoking and weight gain. Higher PlGF levels and lower sFlt-1/PlGF ratios represent healthy placentas, while lower PlGF levels and higher sFlt-1/PlGF ratios represent unhealthy placentas. RESULTS: Among CONCEPTT participants, the slopes relating PlGF levels to birthweight z scores differed according to maternal glycaemia at 34 weeks of gestation (p = 0.003). With optimal maternal glycaemia (HbA1c < 48 mmol/mol [6.5%]/ or continuous glucose monitoring time above range ≤ 30%), birthweight z scores were reduced towards zero (normal weight) with increasing PlGF values (representing a healthy placenta), and increased with decreasing PlGF values. With suboptimal glycaemic status (HbA1c ≥ 48 mmol/mol [6.5%] or time above range > 30%), increasing PlGF values were associated with heavier infants. Those with a healthy placenta (PlGF > 100) and suboptimal glycaemic control had a higher mean z score (2.45) than those with an unhealthy placenta (mean z score = 1.86). Similar relationships were seen when using sFlt-1/PlGF ratio as a marker for a healthy vs unhealthy placenta. CONCLUSIONS/INTERPRETATION: In women with type 1 diabetes, infant birthweight is influenced by both glycaemic status and placental function. In women with suboptimal glycaemia, infant birthweight was heavier when placentas were healthy. Suboptimal placental function should be considered in the setting of suboptimal glycaemia and apparently 'normal' birthweight.


Subject(s)
Birth Weight , Child of Impaired Parents , Diabetes Mellitus, Type 1 , Placenta Growth Factor/blood , Adolescent , Adult , Biological Variation, Individual , Biomarkers/blood , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/diagnosis , Female , Follow-Up Studies , Humans , Infant, Newborn , Male , Placenta Growth Factor/physiology , Pregnancy , Pregnancy Outcome , Pregnancy in Diabetics/blood , Pregnancy in Diabetics/diagnosis , Prognosis , Vascular Endothelial Growth Factor Receptor-1/blood , Young Adult
15.
Diabetologia ; 64(2): 469-475, 2021 02.
Article in English | MEDLINE | ID: mdl-33037887

ABSTRACT

AIMS/HYPOTHESIS: The release of podocyte-derived microparticles into the urine may reflect early kidney injury in diabetes. We measured the urinary excretion of podocyte-derived microparticles in youth with type 1 and type 2 diabetes, and related the values to blood pressure, renal function and blood glucose levels. METHODS: Cross-sectional, exploratory analysis of urine samples and clinical data from youth with type 1 (n = 53) and type 2 (n = 50) diabetes was carried out. Urinary podocyte-derived microparticle numbers, measured by flow cytometry, were assessed in relation to measures of blood glucose levels and renal function. RESULTS: Podocyte-derived microparticle excretion (MPE) normalised to urinary creatinine (MP/UCr) was higher in type 1 vs type 2 diabetes (median [IQR] MP/UCr: 7.88 [8.97] vs 1.84 [8.62]; p < 0.0001), despite the type 2 diabetes group having higher blood pressure (systolic blood pressure, median [range]: 124 [110-154] vs 114 [94-143] mmHg) and higher proportions of microalbuminuria (44.0% vs 13.2%), but shorter time since diabetes diagnosis (median [range]: 1.2 [0.0-7.0] vs 6.4 [2.0-13.9] years), than the type 1 diabetes cohort. MPE in youth with type 1 diabetes was associated with blood glucose (p = 0.01) and eGFR (p = 0.03) but not HbA1c, systolic or diastolic blood pressure or urine albumin/creatinine ratio. After adjustment for age at baseline, duration of diabetes, sex and BMI, the association with eGFR remained significant (p = 0.04). No associations were found between MPE and these clinical variables in youth with type 2 diabetes. CONCLUSIONS/INTERPRETATION: Significant associations between podocyte MPE, blood glucose levels and eGFR were observed in youth with type 1 diabetes but not in those with type 2 diabetes, notwithstanding increased renal pathology in the type 2 diabetes cohort. These findings suggest that podocyte injury differs in the two diabetes cohorts. Graphical abstract.


Subject(s)
Acute Kidney Injury/urine , Blood Glucose/metabolism , Cell-Derived Microparticles/metabolism , Diabetes Mellitus, Type 1/urine , Diabetes Mellitus, Type 2/urine , Diabetic Nephropathies/urine , Podocytes/metabolism , Acute Kidney Injury/etiology , Acute Kidney Injury/metabolism , Adolescent , Blood Pressure , Creatinine/urine , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Female , Flow Cytometry , Glomerular Filtration Rate , Glycated Hemoglobin/metabolism , Humans , Male , Urine/chemistry , Urine/cytology
16.
J Virol ; 94(2)2020 01 06.
Article in English | MEDLINE | ID: mdl-31694951

ABSTRACT

Murine leukemia viruses (MLVs) have long been used as a research model to further our understanding of retroviruses. These simple gammaretroviruses have been studied extensively in various facets of science for nearly half a century, yet we have surprisingly little quantitative information about some of the basic features of these viral particles. These include parameters such as the genome packaging efficiency and the number of particles required for a productive infection. The reason for this knowledge gap relies primarily on the technical challenge of accurately measuring intact viral particles from infected cell supernatants. Virus-infected cells are well known to release soluble viral proteins, defective viruses, and extracellular vesicles (EVs) harboring viral proteins that may mimic viruses, all of which can skew virus titer quantifications. Flow virometry, also known as nanoscale flow cytometry or simply small-particle flow cytometry, is an emerging analytical method enabling high-throughput single-virus phenotypic characterizations. By utilizing the viral envelope glycoprotein (Env) and monodisperse light scattering characteristics as discerning parameters of intact virus particles, here, we analyzed the basic properties of Moloney MLV (M-MLV). We show that <24% of the total p30 capsid protein measured in infected cell supernatants is associated with intact viruses. We calculate that about one in five M-MLV particles contains a viral RNA genome pair and that individual intact particle infectivity is about 0.4%. These findings provide new insights into the characteristics of an extensively studied prototypical retrovirus while highlighting the benefits of flow virometry for the field of virology.IMPORTANCE Gammaretroviruses, or, more specifically, murine leukemia viruses (MLVs), have been a longstanding model for studying retroviruses. Although being extensively analyzed and dissected for decades, several facets of MLV biology are still poorly understood. One of the primary challenges has been enumerating total intact virus particles in a sample. While several analytical methods can precisely measure virus protein amounts, MLVs are known to induce the secretion of soluble and vesicle-associated viral proteins that can skew these measurements. With recent technological advances in flow cytometry, it is now possible to analyze viruses down to 90 nm in diameter with an approach called flow virometry. The technique has the added benefit of being able to discriminate viruses from extracellular vesicles and free viral proteins in order to confidently provide an intact viral particle count. Here, we used flow virometry to provide new insights into the basic characteristics of Moloney MLV.


Subject(s)
Flow Cytometry , Gene Products, env/metabolism , Genome, Viral , Moloney murine leukemia virus/metabolism , Retroviridae Infections/metabolism , Virion/metabolism , Animals , HEK293 Cells , Humans , Mice , NIH 3T3 Cells
17.
Lab Invest ; 100(3): 414-425, 2020 03.
Article in English | MEDLINE | ID: mdl-31527829

ABSTRACT

Prostaglandin E2 receptor EP1 (PGE2/EP1) promotes diabetic renal injury, and EP1 receptor deletion improves hyperfiltration, albuminuria, and fibrosis. The role of EP1 receptors in hypertensive kidney disease (HKD) remains controversial. We examined the contribution of EP1 receptors to HKD. EP1 null (EP1-/-) mice were bred with hypertensive TTRhRen mice (Htn) to evaluate kidney function and injury at 24 weeks. EP1 deletion had no effect on elevation of systolic blood pressure in Htn mice (HtnEP1-/-) but resulted in pronounced albuminuria and reduced FITC-inulin clearance, compared with Htn or wild-type (WT) mice. Ultrastructural injury to podocytes and glomerular endothelium was prominent in HtnEP1-/- mice; including widened subendothelial space, subendothelial lucent zones and focal lifting of endothelium from basement membrane, with focal subendothelial cell debris. Cortex COX2 mRNA was increased by EP1 deletion. Glomerular EP3 mRNA was reduced by EP1 deletion, and EP4 by Htn and EP1 deletion. In WT mice, PGE2 increased chloride reabsorption via EP1 in isolated perfused thick ascending limb (TAL), but PGE2 or EP1 deletion did not affect vasopressin-mediated chloride reabsorption. In WT and Htn mouse inner medullary collecting duct (IMCD), PGE2 inhibited vasopressin-water transport, but not in EP1-/- or HtnEP1-/- mice. Overall, EP1 mediated TAL and IMCD transport in response to PGE2 is unaltered in Htn, and EP1 is protective in HKD.


Subject(s)
Hypertension, Renal , Podocytes , Receptors, Prostaglandin E, EP1 Subtype , Animals , Disease Models, Animal , Endothelial Cells/cytology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Gene Deletion , Glomerular Filtration Rate/genetics , Hypertension, Renal/metabolism , Hypertension, Renal/pathology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Mice , Mice, Transgenic , Podocytes/cytology , Podocytes/metabolism , Podocytes/pathology , Receptors, Prostaglandin E, EP1 Subtype/genetics , Receptors, Prostaglandin E, EP1 Subtype/metabolism
18.
Cell Physiol Biochem ; 54(1): 88-109, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31990489

ABSTRACT

Extracellular vesicles (EVs) are important mediators of intercellular communication. Since EVs are also released during pathological conditions, there has been considerable interest in their potential as sensitive biomarkers of cellular stress and/or injury. In the context of kidney disease, urinary EVs are promising indicators of glomerular and tubular damage. In the present review we discuss the role of urinary EVs in kidney health and disease. Our focus is to explore urinary large EVs (lEVs, often referred to as microparticles or microvesicles) as direct and noninvasive early biomarkers of renal injury. In this regard, studies have been demonstrating altered levels of urinary lEVs, especially podocyte-derived lEVs, preceding the decrease of renal function assessed by classical markers. In addition, we discuss the role of small EVs (sEVs, often referred to as exosomes) and their contents in kidney pathophysiology. Even though results concerning the production of sEVs during diseased conditions are varied, there has been a consensus on the importance of urinary sEV content assessment in kidney disease. These mediators, including EV-released miRNAs and mRNAs, are responsible for EV-mediated signaling in the regulation of renal cellular homeostasis, pathogenesis and regeneration. Finally, steps necessary for the validation of EVs as reliable markers will be discussed.


Subject(s)
Extracellular Vesicles/pathology , Kidney Diseases/diagnosis , Kidney Glomerulus/pathology , Kidney Tubules/pathology , Animals , Biomarkers/analysis , Biomarkers/urine , Humans , Kidney Diseases/pathology , Kidney Diseases/urine
19.
Clin Sci (Lond) ; 133(14): 1587-1602, 2019 07 31.
Article in English | MEDLINE | ID: mdl-31308217

ABSTRACT

PBI-4050 (3-pentylbenzenacetic acid sodium salt), a novel first-in-class orally active compound that has completed clinical Phases Ib and II in subjects with chronic kidney disease (CKD) and metabolic syndrome respectively, exerts antifibrotic effects in several organs via a novel mechanism of action, partly through activation of the G protein receptor 40 (GPR40) receptor. Here we evaluate the effects of PBI-4050 in both WT and Gpr40-/- mice on adenine-induced tubulointerstitial injury, anemia and activation of the unfolded protein response (UPR) pathway. Adenine-induced CKD was achieved in 8-week-old C57BL/6 mice fed a diet supplemented with 0.25% adenine. After 1 week, PBI-4050 or vehicle was administered daily by oral-gavage for 3 weeks. Gpr40-/- mice were also subjected to adenine-feeding, with or without PBI-4050 treatment. PBI-4050 improved renal function and urine concentrating ability. Anemia was present in adenine-fed mice, while PBI-4050 blunted these effects and led to significantly higher plasma erythropoietin (EPO) levels. Adenine-induced renal fibrosis, endoplasmic reticulum (ER) stress and apoptosis were significantly decreased by PBI-4050. In parallel, Gpr40-/- mice were more susceptible to adenine-induced fibrosis, renal function impairment, anemia and ER stress compared with WT mice. Importantly, PBI-4050 treatment in Gpr40-/- mice failed to reduce renal injury in this model. Taken together, PBI-4050 prevented adenine-induced renal injury while these beneficial effects were lost upon Gpr40 deletion. These data reinforce PBI-4050's use as a renoprotective therapy and identify GPR40 as a crucial mediator of its beneficial effects.


Subject(s)
Acetates/administration & dosage , Adenine/adverse effects , Kidney Diseases/drug therapy , Kidney/injuries , Receptors, G-Protein-Coupled/metabolism , Animals , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Humans , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics
20.
BMC Nephrol ; 20(1): 294, 2019 08 02.
Article in English | MEDLINE | ID: mdl-31375072

ABSTRACT

BACKGROUND: Although hemodialysis is a highly effective treatment for diffusive clearance of low molecular weight uremic toxins, its effect on circulating extracellular vesicles and submicron particles is less clear. The purpose of this study was to examine the impact of hemodialysis on circulating levels of submicron particles. METHODS: Plasma samples from patients were collected immediately before and after the mid-week hemodialysis session. Total submicron particles were assessed by nanoparticle tracking analysis and levels of endothelial (CD144+), platelet (CD41+), leukocyte (CD45+), and total (Annexin V+) membrane microparticles (MPs) were assessed by flow cytometry. RESULTS: Total submicron particle number was significantly lower post-dialysis with reductions in particles < 40 nm, 40-100 nm, and 100-1000 nm in size. Circulating annexin V+ MPs, platelet MPs, leukocyte MPs, and endothelial MPs were all reduced following dialysis. Assessment of protein markers suggested that extracellular vesicles were not present in the dialysate, but rather adsorbed to the dialysis membrane. CONCLUSIONS: In summary, hemodialysis is associated with reductions in circulating submicron particles including membrane MPs. Accordingly, there may be significant interdialytic variation in circulating submicron particles. Investigators interested in measuring extracellular vesicles in patients undergoing hemodialysis should therefore carefully consider the timing of biosampling.


Subject(s)
Extracellular Vesicles , Kidney Failure, Chronic/blood , Kidney Failure, Chronic/therapy , Renal Dialysis , Annexin A5/blood , Antigens, CD/blood , Blood Platelets/cytology , Blood Platelets/immunology , Cadherins/blood , Cell-Derived Microparticles , Cohort Studies , Female , Flow Cytometry , Hemodialysis Solutions/chemistry , Humans , Leukocyte Common Antigens/blood , Leukocytes/cytology , Leukocytes/immunology , Male , Middle Aged , Nanoparticles/analysis
SELECTION OF CITATIONS
SEARCH DETAIL