Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
RNA ; 29(8): 1301-1315, 2023 08.
Article in English | MEDLINE | ID: mdl-37192815

ABSTRACT

Systematic evolution of ligands through exponential enrichment (SELEX) is widely used to identify functional nucleic acids, such as aptamers and ribozymes. Ideally, selective pressure drives the enrichment of sequences that display the function of interest (binding, catalysis, etc.). However, amplification biases from reverse transcription can overwhelm this enrichment and leave some functional sequences at a disadvantage, with cumulative effects across multiple rounds of selection. Libraries that are designed to include structural scaffolds can improve selection outcomes by sampling sequence space more strategically, but they are also susceptible to such amplification biases, particularly during reverse transcription. Therefore, we tested five reverse transcriptases (RTs)-ImProm-II, Marathon RT (MaRT), TGIRT-III, SuperScript IV (SSIV), and BST 3.0 DNA polymerase (BST)-to determine which enzymes introduced the least bias. We directly compared cDNA yield and processivity for these enzymes on RNA templates with varying degrees of structure under various reaction conditions. In these analyses, BST exhibited excellent processivity, generated large quantities of the full-length cDNA product, displayed little bias among templates with varying structure and sequence, and performed well on long, highly structured viral RNAs. Additionally, six RNA libraries containing either strong, moderate, or no incorporated structural elements were pooled and competed head-to-head in six rounds of an amplification-only selection without external selective pressure using either SSIV, ImProm-II, or BST during reverse transcription. High-throughput sequencing established that BST maintained the most neutral enrichment values, indicating low interlibrary bias over the course of six rounds, relative to SSIV and ImProm-II, and it introduced minimal mutational bias.


Subject(s)
Aptamers, Nucleotide , Reverse Transcription , DNA, Complementary , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , Gene Library , RNA, Viral , Aptamers, Nucleotide/chemistry , SELEX Aptamer Technique
2.
Nat Chem Biol ; 18(11): 1263-1269, 2022 11.
Article in English | MEDLINE | ID: mdl-36097297

ABSTRACT

The discovery of ribozymes has inspired exploration of RNA's potential to serve as primordial catalysts in a hypothesized RNA world. Modern oxidoreductase enzymes employ differential binding between reduced and oxidized forms of redox cofactors to alter cofactor reduction potential and enhance the enzyme's catalytic capabilities. The utility of differential affinity has been underexplored as a chemical strategy for RNA. Here we show an RNA aptamer that preferentially binds oxidized forms of flavin over reduced forms and markedly shifts flavin reduction potential by -40 mV, similar to shifts for oxidoreductases. Nuclear magnetic resonance structural analysis revealed π-π and donor atom-π interactions between the aptamer and flavin that cause unfavorable contacts with the electron-rich reduced form, suggesting a mechanism by which the local environment of the RNA-binding pocket drives the observed shift in cofactor reduction potential. It seems likely that primordial RNAs could have used similar strategies in RNA world metabolisms.


Subject(s)
Aptamers, Nucleotide , RNA, Catalytic , Aptamers, Nucleotide/metabolism , RNA, Catalytic/metabolism , Oxidation-Reduction , Flavins/chemistry , Oxidoreductases/metabolism , RNA/metabolism
3.
RNA Biol ; 21(1): 1-12, 2024 01.
Article in English | MEDLINE | ID: mdl-38032240

ABSTRACT

NAD can be inserted co-transcriptionally via non-canonical initiation to form NAD-RNA. However, that mechanism is unlikely for CoA-linked RNAs due to low intracellular concentration of the required initiator nucleotide, 3'-dephospho-CoA (dpCoA). We report here that phosphopantetheine adenylyltransferase (PPAT), an enzyme of CoA biosynthetic pathway, accepts RNA transcripts as its acceptor substrate and transfers 4'-phosphopantetheine to yield CoA-RNA post-transcriptionally. Synthetic natural (RNAI) and small artificial RNAs were used to identify the features of RNA that are needed for it to serve as PPAT substrate. RNAs with 4-10 unpaired nucleotides at the 5' terminus served as PPAT substrates, but RNAs having <4 unpaired nucleotides did not undergo capping. No capping was observed when the +1A was changed to G or when 5' triphosphate was removed by RNA pyrophosphohydrolase (RppH), suggesting the enzyme recognizes pppA-RNA as an ATP analog. PPAT binding affinities were equivalent for transcripts with +1A, +1 G, or 5'OH (+1A), indicating that productive enzymatic recognition is driven more by local positioning effects than by overall binding affinity. Capping rates were independent of the number of unpaired nucleotides in the range of 4-10 nucleotides. Capping was strongly inhibited by ATP, reducing CoA-RNA production ~70% when equimolar ATP and substrate RNA were present. Dual bacterial expression of candidate RNAs with different 5' structures followed by CoA-RNA CaptureSeq revealed 12-fold enrichment of the better PPAT substrate, consistent with in vivo CoA-capping of RNA transcripts by PPAT. These results suggest post-transcriptional RNA capping as a possible mechanism for the biogenesis of CoA-RNAs in bacteria.


Subject(s)
Coenzyme A , NAD , Coenzyme A/metabolism , Nucleotidyltransferases/chemistry , Adenosine Triphosphate
4.
Nucleic Acids Res ; 50(3): 1701-1717, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35018437

ABSTRACT

The HIV-1 capsid core participates in several replication processes. The mature capsid core is a lattice composed of capsid (CA) monomers thought to assemble first into CA dimers, then into ∼250 CA hexamers and 12 CA pentamers. CA assembly requires conformational flexibility of each unit, resulting in the presence of unique, solvent-accessible surfaces. Significant advances have improved our understanding of the roles of the capsid core in replication; however, the contributions of individual CA assembly forms remain unclear and there are limited tools available to evaluate these forms in vivo. Here, we have selected aptamers that bind CA lattice tubes. We describe aptamer CA15-2, which selectively binds CA lattice, but not CA monomer or CA hexamer, suggesting that it targets an interface present and accessible only on CA lattice. CA15-2 does not compete with PF74 for binding, indicating that it likely binds a non-overlapping site. Furthermore, CA15-2 inhibits HIV-1 replication when expressed in virus producer cells, but not target cells, suggesting that it binds a biologically-relevant site during virus production that is either not accessible during post-entry replication steps or is accessible but unaltered by aptamer binding. Importantly, CA15-2 represents the first aptamer that specifically recognizes the HIV-1 CA lattice.


Subject(s)
Aptamers, Nucleotide , HIV-1 , Aptamers, Nucleotide/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , HIV-1/metabolism , Virus Replication/genetics
5.
RNA ; 26(11): 1667-1679, 2020 11.
Article in English | MEDLINE | ID: mdl-32732393

ABSTRACT

Nucleic acid aptamers can be chemically modified to enhance function, but modifying previously selected aptamers can have nontrivial structural and functional consequences. We present a reselection strategy to evaluate the impact of several modifications on preexisting aptamer pools. RNA aptamer libraries with affinity to HIV-1 reverse transcriptase (RT) were retranscribed with 2'-F, 2'-OMe, or 2'-NH2 pyrimidines and subjected to three additional selection cycles. RT inhibition was observed for representative aptamers from several structural families identified by high-throughput sequencing when transcribed with their corresponding modifications. Thus, reselection identified specialized subsets of aptamers that tolerated chemical modifications from unmodified preenriched libraries. Inhibition was the strongest with the 2'-F-pyrimidine (2'-FY) RNAs, as compared to inhibition by the 2'-OMeY and 2'-NH2Y RNAs. Unexpectedly, a diverse panel of retroviral RTs were strongly inhibited by all 2'-FY-modified transcripts, including sequences that do not inhibit those RTs as unmodified RNA. The magnitude of promiscuous RT inhibition was proportional to mole fraction 2'-FY in the transcript. RT binding affinity by 2'-FY transcripts was more sensitive to salt concentration than binding by unmodified transcripts, indicating that interaction with retroviral RTs is more ionic in character for 2'-FY RNA than for unmodified 2'-OH RNA. These surprising features of 2'-FY-modified RNA may have general implications for applied aptamer technologies.


Subject(s)
Aptamers, Nucleotide/chemical synthesis , HIV Reverse Transcriptase/antagonists & inhibitors , HIV-1/enzymology , Pyridines/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Drug Evaluation, Preclinical , Gene Library , HIV-1/drug effects , High-Throughput Nucleotide Sequencing , Humans , Nucleic Acid Conformation , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , SELEX Aptamer Technique
6.
Nucleic Acids Res ; 48(5): 2709-2722, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31943114

ABSTRACT

RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit RT in enzymatic and viral replication assays. Some aptamers inhibit RT from only a few viral clades, while others show broad-spectrum inhibition. Biophysical determinants of recognition specificity are poorly understood. We investigated the interface between HIV-1 RT and a broad-spectrum UCAA-family aptamer. SAR and hydroxyl radical probing identified aptamer structural elements critical for inhibition and established the role of signature UCAA bulge motif in RT-aptamer interaction. HDX footprinting on RT ± aptamer shows strong contacts with both subunits, especially near the C-terminus of p51. Alanine scanning revealed decreased inhibition by the aptamer for mutants P420A, L422A and K424A. 2D proton nuclear magnetic resonance and SAXS data provided constraints on the solution structure of the aptamer and enable computational modeling of the docked complex with RT. Surprisingly, the aptamer enhanced proteolytic cleavage of precursor p66/p66 by HIV-1 protease, suggesting that it stabilizes the productive conformation to allow maturation. These results illuminate features at the RT-aptamer interface that govern recognition specificity by a broad-spectrum antiviral aptamer, and they open new possibilities for accelerating RT maturation and interfering with viral replication.


Subject(s)
Aptamers, Nucleotide/metabolism , HIV Protease/metabolism , HIV Reverse Transcriptase/metabolism , Aptamers, Nucleotide/chemistry , Molecular Docking Simulation , Mutagenesis/genetics , Mutant Proteins/metabolism , Protein Binding , Protein Multimerization , Reverse Transcriptase Inhibitors/pharmacology
7.
Int J Mol Sci ; 21(5)2020 Mar 09.
Article in English | MEDLINE | ID: mdl-32182935

ABSTRACT

Although molecular mechanisms driving tumor progression have been extensively studied, the biological nature of the various populations of circulating tumor cells (CTCs) within the blood is still not well understood. Tumor cell fusion with immune cells is a longstanding hypothesis that has caught more attention in recent times. Specifically, fusion of tumor cells with macrophages might lead to the development of metastasis by acquiring features such as genetic and epigenetic heterogeneity, chemotherapeutic resistance, and immune tolerance. In addition to the traditional FDA-approved definition of a CTC (CD45-, EpCAM+, cytokeratins 8+, 18+ or 19+, with a DAPI+ nucleus), an additional circulating cell population has been identified as being potential fusions cells, characterized by distinct, large, polymorphonuclear cancer-associated cells with a dual epithelial and macrophage/myeloid phenotype. Artificial fusion of tumor cells with macrophages leads to migratory, invasive, and metastatic phenotypes. Further studies might investigate whether these have a potential impact on the immune response towards the cancer. In this review, the background, evidence, and potential relevance of tumor cell fusions with macrophages is discussed, along with the potential role of intercellular connections in their formation. Such fusion cells could be a key component in cancer metastasis, and therefore, evolve as a diagnostic and therapeutic target in cancer precision medicine.


Subject(s)
Biomarkers, Tumor/blood , Macrophages/pathology , Neoplasm Metastasis/pathology , Neoplasms/pathology , Animals , Humans , Neoplasms/blood , Neoplastic Cells, Circulating/pathology
8.
Angew Chem Int Ed Engl ; 59(42): 18546-18555, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32627326

ABSTRACT

Tumor cell-surface markers are usually overexpressed or mutated protein receptors for which spatiotemporal regulation differs between and within cancers. Single-molecule fluorescence imaging can profile individual markers in different cellular contexts with molecular precision. However, standard single-molecule imaging methods based on overexpressed genetically encoded tags or cumbersome probes can significantly alter the native state of receptors. We introduce a live-cell points accumulation for imaging in nanoscale topography (PAINT) method that exploits aptamers as minimally invasive affinity probes. Localization and tracking of individual receptors are based on stochastic and transient binding between aptamers and their targets. We demonstrated single-molecule imaging of a model tumor marker (EGFR) on a panel of living cancer cells. Affinity to EGFR was finely tuned by rational engineering of aptamer sequences to define receptor motion and/or native receptor density.


Subject(s)
Aptamers, Nucleotide/metabolism , Single Molecule Imaging/methods , Aptamers, Nucleotide/chemistry , Cell Line, Tumor , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Humans , Microscopy, Fluorescence , Receptors, Transferrin/chemistry , Receptors, Transferrin/metabolism
9.
Nucleic Acids Res ; 45(3): 1345-1354, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28180302

ABSTRACT

Ribozymes can catalyze phosphoryl or nucleotidyl transfer onto ribose hydroxyls of RNA chains. We report a single ribozyme that performs both reactions, with a nucleobase serving as initial acceptor moiety. This unprecedented combined reaction was revealed while investigating potential contributions of ribose hydroxyls to catalysis by kinase ribozyme K28. For a 58nt, cis-acting form of K28, each nucleotide could be replaced with the corresponding 2΄F analog without loss of activity, indicating that no particular 2΄OH is specifically required. Reactivities of two-stranded K28 variants with oligodeoxynucleotide acceptor strands devoid of any 2΄OH moieties implicate modification on an internal guanosine N-2, rather than a ribose hydroxyl. Product mass suggests formation of a GDP(S) adduct along with a second thiophosphorylation, implying that the ribozyme catalyzes both phosphoryl and nucleotidyl transfers. This is further supported by transfer of radiolabels into product from both α and γ phosphates of donor molecules. Furthermore, periodate reactivity of the final product signifies acquisition of a ribose sugar with an intact 2΄-3΄ vicinal diol. Neither nucleobase modification nor nucleotidyl transfer has previously been reported for a kinase ribozyme, making this a first-in-class ribozyme. Base-modifying ribozymes may have played important roles in early RNA world evolution by enhancing nucleic acid functions.


Subject(s)
RNA, Catalytic/chemistry , RNA, Catalytic/metabolism , RNA/chemistry , RNA/metabolism , Binding Sites , Catalysis , Evolution, Molecular , Guanosine/chemistry , Hydrogen-Ion Concentration , Kinetics , Nucleic Acid Conformation , Phosphorylation , RNA Stability , Substrate Specificity , Synthetic Biology , Temperature
10.
Nucleic Acids Res ; 45(10): 6087-6097, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28334941

ABSTRACT

RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit HIV-1 replication, but little is known about potential aptamer-specific viral resistance. During replication, RT interacts with diverse nucleic acids. Thus, the genetic threshold for eliciting resistance may be high for aptamers that make numerous contacts with RT. To evaluate the impact of RT-aptamer binding specificity on replication, we engineered proviral plasmids encoding diverse RTs within the backbone of HIV-1 strain NL4-3. Viruses inhibited by pseudoknot aptamers were rendered insensitive by a naturally occurring R277K variant, providing the first demonstration of aptamer-specific resistance in cell culture. Naturally occurring, pseudoknot-insensitive viruses were rendered sensitive by the inverse K277R mutation, establishing RT as the genetic locus for aptamer-mediated HIV-1 inhibition. Non-pseudoknot RNA aptamers exhibited broad-spectrum inhibition. Inhibition was observed only when virus was produced in aptamer-expressing cells, indicating that encapsidation is required. HIV-1 suppression magnitude correlated with the number of encapsidated aptamer transcripts per virion, with saturation occurring around 1:1 stoichiometry with packaged RT. Encapsidation specificity suggests that aptamers may encounter dimerized GagPol in the cytosol during viral assembly. This study provides new insights into HIV-1's capacity to escape aptamer-mediated inhibition, the potential utility of broad-spectrum aptamers to overcome resistance, and molecular interactions that occur during viral assembly.


Subject(s)
Aptamers, Nucleotide/pharmacology , HIV Reverse Transcriptase/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Aptamers, Nucleotide/metabolism , Capsid/metabolism , HEK293 Cells , HIV-1/drug effects , HIV-1/enzymology , HIV-1/ultrastructure , Humans , Mutation, Missense , Nucleic Acid Conformation , Protein Binding , Proviruses/enzymology , Proviruses/ultrastructure , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Inhibitors/metabolism , Transfection , Virus Replication/drug effects
11.
Phys Biol ; 15(6): 065006, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30124431

ABSTRACT

Peptide amphiphile micelles (PAMs) are attractive vehicles for the delivery of a variety of therapeutic and prophylactic peptides. However, a key limitation of PAMs is their lack of preferential targeting ability. In this paper, we describe our design of a PAM system that incorporates a DNA oligonucleotide amphiphile (antitail amphiphile-AA) to form A/PAMs. A cell-targeting DNA aptamer with a 3' extension sequence (tail) complementary to the AA is annealed to the surface to form aptamer-displaying PAMs (Aptamer~A/PAMs). Aptamer~A/PAMs are small, anionic, stable nanoparticles capable of delivering a large mass percentage peptide amphiphile (PA) compared to targeting DNA components. Aptamer~A/PAMs are stable for over 4 h in the presence of biological fluids. Additionally, the aptamer retains its cell-targeting properties when annealed to the A/PAM, thus leading to enhanced delivery to a specifically-targeted B-cell leukemia cell line. This exciting modular technology can be readily used with a library of different targeting aptamers and PAs, capable of improving the bioavailability and potency of the peptide cargo.


Subject(s)
Aptamers, Nucleotide/chemistry , Drug Delivery Systems , Micelles , Peptides/chemistry , Peptides/pharmacology , Animals , Cell Line, Tumor , Humans , Mice , Nanoparticles/chemistry , Nanoparticles/ultrastructure
12.
J Virol ; 90(14): 6502-14, 2016 07 15.
Article in English | MEDLINE | ID: mdl-27147747

ABSTRACT

UNLABELLED: Enveloped viruses utilize transmembrane surface glycoproteins to gain entry into target cells. Glycoproteins from diverse viral families can be incorporated into nonnative viral particles in a process termed pseudotyping; however, the molecular mechanisms governing acquisition of these glycoproteins are poorly understood. For murine leukemia virus envelope (MLV Env) glycoprotein, incorporation into foreign viral particles has been shown to be an active process, but it does not appear to be caused by direct interactions among viral proteins. In this study, we coupled in vivo selection systems with Illumina next-generation sequencing (NGS) to test hundreds of thousands of MLV Env mutants for the ability to be enriched in viral particles and to perform other glycoprotein functions. NGS analyses on a subset of these mutants predicted that the residues important for incorporation are in the membrane-proximal external region (MPER), particularly W127 and W137, and the residues in the membrane-spanning domain (MSD) and also immediately flanking it (T140 to L163). These predictions were validated by directly measuring the impact of mutations in these regions on fusogenicity, infectivity, and incorporation. We suggest that these two regions dictate pseudotyping through interactions with specific lipid environments formed during viral assembly. IMPORTANCE: Researchers from numerous fields routinely exploit the ability to manipulate viral tropism by swapping viral surface proteins. However, this process, termed pseudotyping, is poorly understood at the molecular level. For murine leukemia virus envelope (MLV Env) glycoprotein, incorporation into foreign viral particles is an active process, but it does not appear to occur through direct viral protein-protein interactions. In this study, we tested hundreds of thousands of MLV Env mutants for the ability to be enriched in viral particles as well as perform other glycoprotein functions. Our analyses on a subset of these mutants predict that the glycoprotein regions embedded in and immediately flanking the viral membrane dictate active incorporation into viral particles. We suggest that pseudotyping occurs through specific lipid-protein interactions at the viral assembly site.


Subject(s)
HEK293 Cells/virology , Leukemia Virus, Murine/genetics , Retroviridae Infections/virology , Viral Envelope Proteins/metabolism , Virus Assembly , Virus Internalization , Amino Acid Sequence , Animals , Cell Fusion , High-Throughput Nucleotide Sequencing , Humans , Mutagenesis , Mutation/genetics , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics
13.
Arch Biochem Biophys ; 603: 118-30, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27208427

ABSTRACT

During the past decade, single-molecule studies of the ribosome have significantly advanced our understanding of protein synthesis. The broadest application of these methods has been towards the investigation of ribosome conformational dynamics using single-molecule Förster resonance energy transfer (smFRET). The recent advances in fluorescently labeled ribosomes and translation components have resulted in success of smFRET experiments. Various methods have been employed to target fluorescent dyes to specific locations within the ribosome. Primarily, these methods have involved additional steps including subunit dissociation and/or full reconstitution, which could result in ribosomes of reduced activity and translation efficiency. In addition, substantial time and effort are required to produce limited quantities of material. To enable rapid and large-scale production of highly active, fluorescently labeled ribosomes, we have developed a procedure that combines partial reconstitution with His-tag purification. This allows for a homogeneous single-step purification of mutant ribosomes and subsequent integration of labeled proteins. Ribosomes produced with this method are shown to be as active as ribosomes purified using classical methods. While we have focused on two labeling sites in this report, the method is generalizable and can in principle be extended to any non-essential ribosomal protein.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Peptide Elongation Factor G/chemistry , Ribosomes/chemistry , DNA/chemistry , Electrophoresis, Polyacrylamide Gel , Fluorescent Dyes/chemistry , Histidine/chemistry , Molecular Dynamics Simulation , Mutation , Oligonucleotides/chemistry , Protein Conformation , RNA, Messenger/chemistry , RNA, Transfer/chemistry , Sucrose/chemistry
14.
Nucleic Acids Res ; 41(5): 3327-38, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23358821

ABSTRACT

The chemical strategies used by ribozymes to enhance reaction rates are revealed in part from their metal ion and pH requirements. We find that kinase ribozyme K28(1-77)C, in contrast with previously characterized kinase ribozymes, requires Cu(2+) for optimal catalysis of thiophosphoryl transfer from GTPγS. Phosphoryl transfer from GTP is greatly reduced in the absence of Cu(2+), indicating a specific catalytic role independent of any potential interactions with the GTPγS thiophosphoryl group. In-line probing and ATPγS competition both argue against direct Cu(2+) binding by RNA; rather, these data establish that Cu(2+) enters the active site within a Cu(2+)•GTPγS or Cu(2+)•GTP chelation complex, and that Cu(2+)•nucleobase interactions further enforce Cu(2+) selectivity and position the metal ion for Lewis acid catalysis. Replacing Mg(2+) with [Co(NH3)6](3+) significantly reduced product yield, but not kobs, indicating that the role of inner-sphere Mg(2+) coordination is structural rather than catalytic. Replacing Mg(2+) with alkaline earths of increasing ionic radii (Ca(2+), Sr(2+) and Ba(2+)) gave lower yields and approximately linear rates of product accumulation. Finally, we observe that reaction rates increased with pH in log-linear fashion with an apparent pKa = 8.0 ± 0.1, indicating deprotonation in the rate-limiting step.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Phosphotransferases/chemistry , RNA, Catalytic/chemistry , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Base Sequence , Buffers , Catalysis , Catalytic Domain , Hydrogen-Ion Concentration , Lewis Acids , Magnesium/chemistry , Nucleic Acid Conformation , Phosphorylation
15.
Nucleic Acids Res ; 41(3): 1873-84, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23241386

ABSTRACT

Systematic evolution of ligands through exponential enrichment (SELEX) is a well-established method for generating nucleic acid populations that are enriched for specified functions. High-throughput sequencing (HTS) enhances the power of comparative sequence analysis to reveal details of how RNAs within these populations recognize their targets. We used HTS analysis to evaluate RNA populations selected to bind type I human immunodeficiency virus reverse transcriptase (RT). The populations are enriched in RNAs of independent lineages that converge on shared motifs and in clusters of RNAs with nearly identical sequences that share common ancestry. Both of these features informed inferences of the secondary structures of enriched RNAs, their minimal structural requirements and their stabilities in RT-aptamer complexes. Monitoring population dynamics in response to increasing selection pressure revealed RNA inhibitors of RT that are more potent than the previously identified pseudoknots. Improved potency was observed for inhibition of both purified RT in enzymatic assays and viral replication in cell-based assays. Structural and functional details of converged motifs that are obscured by simple consensus descriptions are also revealed by the HTS analysis. The approach presented here can readily be generalized for the efficient and systematic post-SELEX development of aptamers for down-stream applications.


Subject(s)
Anti-HIV Agents/chemistry , Aptamers, Nucleotide/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , High-Throughput Nucleotide Sequencing/methods , Reverse Transcriptase Inhibitors/chemistry , Sequence Analysis, RNA/methods , Anti-HIV Agents/pharmacology , Aptamers, Nucleotide/pharmacology , Base Sequence , Consensus Sequence , HIV-1/drug effects , HIV-1/physiology , Nucleotide Motifs , Reverse Transcriptase Inhibitors/pharmacology , SELEX Aptamer Technique , Virus Replication/drug effects
16.
Nucleic Acids Res ; 40(15): 7528-40, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22618879

ABSTRACT

Phosphoryl transfer onto backbone hydroxyls is a recognized catalytic activity of nucleic acids. We find that kinase ribozyme K28 possesses an unusually complex active site that promotes (thio)phosphorylation of two residues widely separated in primary sequence. After allowing the ribozyme to radiolabel itself by phosphoryl transfer from [γ-(32)P]GTP, DNAzyme-mediated cleavage yielded two radiolabeled cleavage fragments, indicating phosphorylation sites within each of the two cleavage fragments. These sites were mapped by alkaline digestion and primer extension pausing. Enzymatic digestion and mutational analysis identified nucleotides important for activity and established the active structure as being a constrained pseudoknot with unusual connectivity that may juxtapose the two reactive sites. Nuclease sensitivities for nucleotides near the pseudoknot core were altered in the presence of GTPγS, indicating donor-induced folding. The 5' target site was more strongly favored in full-length ribozyme K28 (128 nt) than in truncated RNAs (58 nt). Electrophoretic mobilities of self-thiophosphorylated products on organomercurial gels are distinct from the 5' mono-thiophosphorylated product produced by reaction with polynucleotide kinase, potentially indicating simultaneous labeling of both sites within individual RNA strands. Our evidence supports a single, compact structure with local dynamics, rather than global rearrangement, as being responsible for dual-site phosphorylation.


Subject(s)
Phosphotransferases/chemistry , RNA, Catalytic/chemistry , Binding Sites , Catalytic Domain , Mutation , Nucleic Acid Conformation , Phosphorylation , Phosphotransferases/metabolism , RNA, Catalytic/metabolism
17.
Nucleic Acids Res ; 40(1): 345-59, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21908397

ABSTRACT

We report key mechanistic differences between the reverse transcriptases (RT) of human immunodeficiency virus type-1 (HIV-1) and of xenotropic murine leukemia virus-related virus (XMRV), a gammaretrovirus that can infect human cells. Steady and pre-steady state kinetics demonstrated that XMRV RT is significantly less efficient in DNA synthesis and in unblocking chain-terminated primers. Surface plasmon resonance experiments showed that the gammaretroviral enzyme has a remarkably higher dissociation rate (k(off)) from DNA, which also results in lower processivity than HIV-1 RT. Transient kinetics of mismatch incorporation revealed that XMRV RT has higher fidelity than HIV-1 RT. We identified RNA aptamers that potently inhibit XMRV, but not HIV-1 RT. XMRV RT is highly susceptible to some nucleoside RT inhibitors, including Translocation Deficient RT inhibitors, but not to non-nucleoside RT inhibitors. We demonstrated that XMRV RT mutants K103R and Q190M, which are equivalent to HIV-1 mutants that are resistant to tenofovir (K65R) and AZT (Q151M), are also resistant to the respective drugs, suggesting that XMRV can acquire resistance to these compounds through the decreased incorporation mechanism reported in HIV-1.


Subject(s)
HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , RNA-Directed DNA Polymerase/chemistry , RNA-Directed DNA Polymerase/metabolism , Xenotropic murine leukemia virus-related virus/enzymology , Adenine/analogs & derivatives , Adenine/pharmacology , Amino Acid Sequence , Aptamers, Nucleotide/pharmacology , DNA/biosynthesis , DNA/metabolism , HIV Reverse Transcriptase/genetics , Kinetics , Models, Molecular , Molecular Sequence Data , Moloney murine leukemia virus/enzymology , Mutation , Nucleotides/metabolism , Organophosphonates/pharmacology , RNA-Directed DNA Polymerase/genetics , Reverse Transcriptase Inhibitors/pharmacology , Sequence Homology, Amino Acid , Tenofovir , Zidovudine/pharmacology , beta-Galactosidase/genetics
18.
Nucleic Acid Ther ; 34(3): 109-124, 2024.
Article in English | MEDLINE | ID: mdl-38752363

ABSTRACT

Recent FDA approvals of mRNA vaccines, short-interfering RNAs, and antisense oligonucleotides highlight the success of oligonucleotides as therapeutics. Aptamers are excellent affinity reagents that can selectively label protein biomarkers, but their clinical application has lagged. When formulating a given aptamer for in vivo use, molecular design details can determine biostability and biodistribution; therefore, extensive postselection manipulation is often required for each new design to identify clinically useful reagents harboring improved pharmacokinetic properties. Few methods are available to comprehensively screen such aptamers, especially in vivo, constituting a significant bottleneck in the field. In this study, we introduce barcoded aptamer technology (BApT) for multiplexed screening of predefined aptamer formulations in vitro and in vivo. We demonstrate this technology by simultaneously investigating 20 aptamer formulations, each harboring different molecular designs, for targeting Non-Small Cell Lung Cancer cells and tumors. Screening in vitro identified a 45 kDa bispecific formulation as the best cancer cell targeting reagent, whereas screening in vivo identified a 30 kDa monomeric formulation as the best tumor-specific targeting reagent. The multiplexed analysis pipeline also identified biodistribution phenotypes shared among formulations with similar molecular architectures. The BApT approach we describe here has the potential for broad application to fields where oligonucleotide-based targeting reagents are desired.


Subject(s)
Aptamers, Nucleotide , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/genetics , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Oligonucleotides/chemistry , Oligonucleotides/pharmacokinetics , Oligonucleotides/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , SELEX Aptamer Technique/methods , Xenograft Model Antitumor Assays
19.
ACS Infect Dis ; 10(8): 2637-2655, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39016538

ABSTRACT

The HIV-1 capsid protein (CA) assumes distinct structural forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, functional contributions of individual CA structures remain unclear, as evaluation of CA presents several technical challenges. To address this knowledge gap, we identified CA-targeting aptamers with different structural specificities, which emerged through a branched SELEX approach using an aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for the CA lattice or bound both the CA lattice and CA hexamer. We then evaluated four representatives to reveal aptamer regions required for binding, highlighting interesting structural features and challenges in aptamer structure determination. Further, we demonstrate binding to biologically relevant CA structural forms and aptamer-mediated affinity purification of CA from cell lysates without virus or host modification, supporting the development of structural form-specific aptamers as exciting new tools for the study of CA.


Subject(s)
Aptamers, Nucleotide , Capsid Proteins , HIV-1 , SELEX Aptamer Technique , Aptamers, Nucleotide/chemistry , SELEX Aptamer Technique/methods , HIV-1/chemistry , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Humans , Protein Binding , Capsid/metabolism , Capsid/chemistry
20.
Mol Ther ; 20(12): 2304-14, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22948672

ABSTRACT

RNA aptamers that bind human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) also inhibit viral replication, making them attractive as therapeutic candidates and potential tools for dissecting viral pathogenesis. However, it is not well understood how aptamer-expression context and cellular RNA pathways govern aptamer accumulation and net antiviral bioactivity. Using a previously-described expression cassette in which aptamers were flanked by two "minimal core" hammerhead ribozymes, we observed only weak suppression of pseudotyped HIV. To evaluate the importance of the minimal ribozymes, we replaced them with extended, tertiary-stabilized hammerhead ribozymes with enhanced self-cleavage activity, in addition to noncleaving ribozymes with active site mutations. Both the active and inactive versions of the extended hammerhead ribozymes increased inhibition of pseudotyped virus, indicating that processing is not necessary for bioactivity. Clonal stable cell lines expressing aptamers from these modified constructs strongly suppressed infectious virus, and were more effective than minimal ribozymes at high viral multiplicity of infection (MOI). Tertiary stabilization greatly increased aptamer accumulation in viral and subcellular compartments, again regardless of self-cleavage capability. We therefore propose that the increased accumulation is responsible for increased suppression, that the bioactive form of the aptamer is one of the uncleaved or partially cleaved transcripts, and that tertiary stabilization increases transcript stability by reducing exonuclease degradation.


Subject(s)
Aptamers, Nucleotide/pharmacology , HIV-1/drug effects , HIV-1/physiology , RNA, Catalytic/metabolism , Virus Replication/drug effects , Cell Line , Humans , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL