Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
New Phytol ; 230(4): 1435-1448, 2021 05.
Article in English | MEDLINE | ID: mdl-33544877

ABSTRACT

Decades of atmospheric nitrogen (N) deposition in the northeastern USA have enhanced this globally important forest carbon (C) sink by relieving N limitation. While many N fertilization experiments found increased forest C storage, the mechanisms driving this response at the ecosystem scale remain uncertain. Following the optimal allocation theory, augmented N availability may reduce belowground C investment by trees to roots and soil symbionts. To test this prediction and its implications on soil biogeochemistry, we constructed C and N budgets for a long-term, whole-watershed N fertilization study at the Fernow Experimental Forest, WV, USA. Nitrogen fertilization increased C storage by shifting C partitioning away from belowground components and towards aboveground woody biomass production. Fertilization also reduced the C cost of N acquisition, allowing for greater C sequestration in vegetation. Despite equal fine litter inputs, the C and N stocks and C : N ratio of the upper mineral soil were greater in the fertilized watershed, likely due to reduced decomposition of plant litter. By combining aboveground and belowground data at the watershed scale, this study demonstrates how plant C allocation responses to N additions may result in greater C storage in both vegetation and soil.


Subject(s)
Carbon , Nitrogen , Biomass , Ecosystem , Forests , Soil , Trees
2.
Oecologia ; 191(4): 971-981, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31617000

ABSTRACT

Nitrogen deposition in the northeastern US changed N availability in the latter part of the twentieth century, with potential legacy effects. However, long-term N cycle measurements are scarce. N isotopes in tree rings have been used as an indicator of N availability through time, but there is little verification of whether species differ in the strength of this signal. Using long-term records at the Fernow Experimental Forest in West Virginia, we examined the relationship between soil conditions, including net nitrification rates, and wood δ15N in 2014, and tested the strength of correlation between tree ring δ15N of four species and stream water NO3- loss from 1971 to 2000. Higher soil NO3- was weakly associated with higher wood δ15N across species, and higher soil net nitrification rates were associated with higher δ15N for Quercus rubra only. The δ15N of Liriodendron tulipifera and Q. rubra, but neither Fagus grandifolia nor Prunus serotina, was correlated with stream water NO3-. L. tulipifera tree ring δ15N had a stronger association with stream water NO3- than Q. rubra. Overall, we found only limited evidence of a relationship between soil N cycling and tree ring δ15N, with a strong correlation between the wood δ15N and NO3- leaching loss through time for one of four species. Tree species differ in their ability to preserve legacies of N cycling in tree ring δ15N, and given the weak relationships between contemporary wood δ15N and soil N cycle measurements, caution is warranted when using wood δ15N to infer changes in the N cycle.


Subject(s)
Forests , Quercus , Nitrogen , Soil , West Virginia
3.
Oecologia ; 185(3): 327-337, 2017 11.
Article in English | MEDLINE | ID: mdl-28913653

ABSTRACT

Increased availability of monomeric aluminum (Al3+) in forest soils is an important adverse effect of acidic deposition that reduces root growth and inhibits nutrient uptake. There is evidence that Al3+ exposure interferes with NO3- uptake. If true for overstory trees, the reduction in stand demand for NO3- could increase NO3- discharge in stream water. These effects may also differ between species that tolerate different levels of soil acidity. To examine these ideas, we measured changes in relative uptake of NO3- and NH4+ by six tree species in situ under increased soil Al3+ using a 15N-labeling technique, and measured soluble soil Al levels in a separate whole-watershed acidification experiment in the Fernow Experimental Forest (WV). When exposed to added Al3+, the proportion of inorganic N acquired as NO3- dropped 14% across species, but we did not detect a reduction in overall N uptake, nor did tree species differ in this response. In the long-term acidification experiment, we found that soluble soil Al was mostly in the free Al3+ form, and the concentration of Al3+ was ~65 µM higher (~250%) in the mineral soil of the acidified watershed vs. an untreated watershed. Thus, increased levels of soil Al3+ under acidic deposition cause a reduction in uptake of NO3- by mature trees. When our 15N uptake results were applied to the watershed acidification experiment, they suggest that increased Al3+ exposure could reduce tree uptake of NO3- by 7.73 kg N ha-1 year-1, and thus increase watershed NO3- discharge.


Subject(s)
Aluminum/chemistry , Nitrogen/chemistry , Nitrogen/metabolism , Soil/chemistry , Trees/metabolism , Ammonia , Ecosystem , Forests , Hydrogen-Ion Concentration , Minerals , Nitrates/chemistry , Nitrates/metabolism , Rivers , Species Specificity
4.
Environ Monit Assess ; 187(10): 657, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26423635

ABSTRACT

Cover data are used to assess vegetative response to a variety of ecological factors. Estimating cover in the herbaceous layer of forests presents a problem because the communities are structurally complex and rich in species. The currently employed techniques for estimating cover are less than optimal for measuring such rich understories because they are inaccurate, slow, or impracticable. A reference-based approach to estimating cover is presented that compares the area of foliar surfaces to the area of an observer's hand. While this technique has been used to estimate cover in prior studies, its accuracy has not been tested. We tested this hand-area method at the individual plant, population, and community scales in a deciduous forest herbaceous layer, and in a separate farm experiment. The precision, accuracy, observer bias, and species bias of the method were tested by comparing the hand-estimated leaf area index values with actual leaf area index, measured using a leaf area meter. The hand-area method was very precise when regressed against actual leaf area index at the plant, population, and community scales (R(2) of 0.97, 0.93, and 0.87). Among the deciduous sites, the hand-area method overestimated leaf area index consistently by 39.1% at all scales. There was no observer bias detected at any scale, but plant overestimation bias was detected in one species at the population scale. The hand-area method is a rapid and reliable technique for estimating leaf area index or cover in the forest herbaceous layer and should be useful to field ecologists interested in answering questions at the plant, population, or community level.


Subject(s)
Environmental Monitoring/methods , Forests , Plant Leaves/growth & development , Trees/growth & development , Models, Theoretical , Species Specificity , West Virginia
SELECTION OF CITATIONS
SEARCH DETAIL