ABSTRACT
The assembly of molybdenum polyoxometalates (POMs) has afforded large discrete nanoclusters with varied degrees of reduction such as the ~20 % reduced molybdenum blues. While many heterometals have been incorporated into these clusters to afford new properties, uranium has yet to be reported. Here we report the first uranium containing molybdenum blue clusters and the unique properties exhibited by this incorporation. The uranyl ion (UO2 2+) directs formation of Mo72U8, a square POM comprised of two faces connected by eight edge-sharing molybdenum dimers. Mo72U8, a chiral cluster, crystallizes as a racemic mixture and, in the solid state, has a 'negative' charge localized on one face of the cluster opposite the 'positively' charged face of another cluster. Using U(IV) as both heterometal and molybdenum reductant afforded crystals of Mo97U10, a wheel cluster with a heptamolybdate cap on one face. Mo97U10 dissociates in solution, losing the heptamolybdate, to form Mo90U10. Using more solvent during synthesis afforded crystals of Mo90U10S4 which, instead of heptamolybdate, contains four sulfate ions. Crystals of Mo90U10S4 undergo a dehydration induced phase change where clusters form a sheet through oxide bridges. Half of the bridges are cation-cation interactions between the uranyl oxygen atom and molybdenum, the first reported of this kind.
ABSTRACT
Macroion-counterion interaction is essential for regulating the solution behaviors of hydrophilic macroions, as simple models for polyelectrolytes. Here, we explore the interaction between uranyl peroxide molecular cluster Li68K12(OH)20[UO2(O2)OH]60 (U60) and multivalent counterions. Different from interaction with monovalent counterions that shows a simple one-step process, isothermal titration calorimetry, combined with light/X-ray scattering measurements and electron microscopy, confirm a two-step process for their interaction with multivalent counterions: an ion-pairing between U60 and the counterion with partial breakage of hydration shells followed by strong U60-U60 attraction, leading to the formation of large nanosheets with severe breakage and reconstruction of hydration shells. The detailed studies on macroion-counterion interaction can be nicely correlated to the microscopic (self-assembly) and macroscopic (gelation or phase separation) phase transitions in the dilute U60 aqueous solutions induced by multivalent counterions.
ABSTRACT
Four unique actinide sulfates were synthesized using solvothermal techniques with strong acids. The first plutonium(III) sulfate structure, Pu(HSO4)3, was synthesized and is isostructural with analogous lanthanide-based frameworks. A similar synthesis approach yielded crystals of NpNa0.5(HSO4)15(SO4)1.5, which has a comparable framework to the Pu(III) compound, but the neptunium metal is tetravalent and sodium is incorporated into the structure, as confirmed by chemical analysis. Anhydrous neptunium sulfate, Np(SO4)2, is reported and is isotypic with U(SO4)2. Finally, (H3O)2(UO2)(SO4)2, which contains a uranyl sulfate sheet structure, was synthesized and characterized. The corresponding sheet anion topology has previously been reported with various oxyanions, but this is the first report that contains sulfate. The sheets are charge balanced by hydronium cations in the interstitial space. This compound readily degrades and forms crystals of the synthetic analogue to the uranium mineral shumwayite, which is likely thermodynamically favorable. All four of these actinide sulfate compounds were synthesized in extremely acidic media, resulting in interesting and unique structures.
ABSTRACT
Extraction of uranium from water is an essential step in in situ leach (ISL) mining and environmental decontamination. This is often done by precipitating uranium in solution as the uranyl peroxide studtite, [(UO2)(O2)(H2O)2](H2O)2, by adding hydrogen peroxide, which is energy-intensive to produce and hazardous to transport. Here, we present a method for synthesizing studtite, by generating reactive oxygen species in solution using a nonthermal plasma. Precipitation of studtite is observed within 5 min of the onset of plasma treatment as confirmed by X-ray diffraction and Raman spectral analysis. The faradaic efficiency of studtite formation is analyzed to estimate the values of hydrogen peroxide yield, 1.23 molecules per incident ion, and the rate constant of the studtite-forming reaction, 4.44 × 107 M-1 s-1. This work is a proof of concept and identifies significant parameters for the future development of a larger scale, higher throughput system.
ABSTRACT
We report the first crystal structure of a Pu(VI)-oxalate compound. This compound, [PuO2(C2O4)(H2O)]·2(H2O) (1), crystallizes in space group P21/c with a = 5.5993(3) Å, b = 16.8797(12) Å, c = 9.3886(6) Å, and ß = 98.713(6)°. It is isostructural with the previously reported U(VI) compound, [UO2(C2O4)(H2O)]·2(H2O). Each plutonyl ion (PuO22+) is coordinated in the equatorial plane by two side-on bidentate oxalates, creating an infinite chain along [001]. A coordinated water molecule and twisting of the oxalates lead to a distorted pentagonal bipyramidal geometry of the Pu. A photochemical degradation was observed for 1, which resulted in the formation of a secondary crystalline phase. The absorption spectrum of this secondary phase confirmed the presence of Pu(IV), but it did not match the spectrum of Pu(C2O4)2·6H2O, which is considered to be the primary product of Pu-oxalate precipitation. While compound 1 has previously been proposed to exist in solution, this is the first time it has been isolated via crystallization. Although redox interactions between Pu and oxalate have been documented in the literature, the present study is the first observation of a photochemical reduction of Pu(VI)-oxalate. As a result, this study has expanded on the limited understanding of the Pu(VI)-oxalate system, which is important for nuclear fuel cycle applications.
ABSTRACT
Four uranyl peroxide compounds with novel structures were formed following the dissolution of studtite, [(UO2)(O2)(H2O)2](H2O)2, in imidazolium-based ionic liquids. The compounds were characterized using single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Raman and infrared (IR) spectroscopy, and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The ionic liquids used in the experiments were 1-ethyl-3-methylimidazolium (EMIm) diethyl phosphate, EMIm ethyl sulfate, and EMIm acetate. Each of the four uranyl peroxide compounds contain components from the ionic liquids as terminal ligands on uranyl peroxide molecular units, bridging ligands in uranyl peroxide sheet structures, or charge balancing cations located in the interstitial space. The studtite dissolved in and reacted with the ionic liquids, producing unique crystal structures depending on the anionic component of the ionic liquid, the temperature at which the synthesis was performed, and the introduction of additional ionic species into the solution. This is the first report of studtite dissolving in and reacting with ionic liquids to form uranyl peroxide compounds, which has the potential to vastly increase the number of synthetic routes for the formation of uranyl peroxide clusters and uranyl peroxide cage clusters.
ABSTRACT
We report a complex coacervate formed by a 2.5 nm-diameter, rigid uranyl peroxide molecular cluster (Li68K12(OH)20)[UO2(O2)OH]60, U6060-) and SrCl2 salt in dilute aqueous solutions, including its location in the phase diagram, composition, rheological features, and critical conditions for phase transitions. In this coacervate, the Sr2+ cations are a major building component, and the coacervate phase covers a substantial region of the phase diagram. This coacervate demonstrates features that differ from traditional coacervates formed by oppositely charged long-chain polyelectrolytes, especially in its formation mechanism, dehydration, enhancement of mechanical strength with increasing ionic strength, and the change of salt partition preference into the coacervate and supernatant phases with ionic strength.
ABSTRACT
Surface water and sediments from the Jackpile mine, St. Anthony mine, Rio Paguate, Rio Moquino, and Mesita Dam areas near Pueblo of Laguna, New Mexico, were analyzed for 226Ra and U using gamma (γ) spectroscopy and inductively coupled plasma mass spectroscopy, respectively. Activity ratios for 226Ra/238U for solid samples range from 0.34 ± 0.13 to 16 ± 2.9, which reflect uranium transport and accumulation (<1), relatively pristine material in secular equilibrium (1), and removal of uranium by weathering (>1). Concentrations ranging from 80 to 225 µg L-1 U were detected in unfiltered water samples near the Jackpile mine. Water samples upstream and downstream from the mine contained concentrations ranging from 12 to 15 µg L-1 U. Water samples collected from the North Pit standing pond in the Jackpile mine contained as much as 1560 pCi L-1 of 226Ra, and passing the water through a 0.2 µM filter did not substantially reduce the activity of 226Ra in the water. 234Th and 226Ra are in secular equilibrium in this water, while radon gas was lost from the water. The results of the current study provide insight into the distribution of U-series radionuclides in the Pueblo of Laguna area, including detection of high levels of radioactivity in water at some locations within the Jackpile mine.
ABSTRACT
Electrospray ionization tandem mass spectrometry with collision-induced dissociation (ESI-MS/MS) was utilized to study the gas phase fragmentation of uranyl peroxide nanoclusters with hydroxo, peroxo, oxalate, and pyrophosphate bridging ligands. These nanoclusters fragment into uranium monomers and dimers with mass-to-charge (m/z) ratios in the 280-380 region. The gas phase fragmentation of each cluster studied yields a distinct UO6 - anion attributed to the cleavage of a uranyl ion bound to 2 peroxide groups, along with other anions that can be attributed to the initial composition of the nanoclusters.
ABSTRACT
Invited for the cover of this issue is the group of Amy Hixon at the University of Notre Dame. The image depicts the newly identified structure of a PuIV oxalate sheet compared to the historically assumed structure. Read the full text of the article at 10.1002/chem.202301164.
ABSTRACT
Plutonium(IV) oxalate hexahydrate (Pu(C2 O4 )2 â 6 H2 O; PuOx) is an important intermediate in the recovery of plutonium from used nuclear fuel. Its formation by precipitation is well studied, yet its crystal structure remains unknown. Instead, the crystal structure of PuOx is assumed to be isostructural with neptunium(IV) oxalate hexahydrate (Np(C2 O4 )2 â 6 H2 O; NpOx) and uranium(IV) oxalate hexahydrate (U(C2 O4 )2 â 6 H2 O; UOx) despite the high degree of unresolved disorder that exists when determining water positions in the crystal structures of the latter two compounds. Such assumptions regarding the isostructural behavior of the actinide elements have been used to predict the structure of PuOx for use in a wide range of studies. Herein, we report the first crystal structures for PuOx and Th(C2 O4 )2 â 6 H2 O (ThOx). These data, along with new characterization of UOx and NpOx, have resulted in the full determination of the structures and resolution of the disorder around the water molecules. Specifically, we have identified the coordination of two water molecules with each metal center, which necessitates a change in oxalate coordination mode from axial to equatorial that has not been reported in the literature. The results of this work exemplify the need to revisit previous assumptions regarding fundamental actinide chemistry, which are heavily relied upon within the current nuclear field.
ABSTRACT
The effects of water vapor and He ion irradiation on the alteration of particles of the uranyl hydroxide phase metaschoepite, [(UO2)8O2(OH)12](H2O)10, are determined. Raman spectra collected immediately postirradiation revealed the presence of a uranyl oxide phase structurally similar to γ-UO3 or U2O7. Short-term storage postirradiation at elevated relative humidity accelerated formation of the uranyl peroxide phase studtite, [(UO2)(O2)(H2O)2](H2O)2. Experiments examining the degradation of metaschoepite and the hydration of UO3 enabled spectral assignments and identification of reaction pathways. The results provide insights into thermal and radiolytic degradation products in both irradiated uranyl hydroxide phases and uranyl peroxide phases, which follow similar degradation pathways.
ABSTRACT
The ionization of uranyl triperoxide monomer, [(UO2)(O2)3]4- (UT), and uranyl peroxide cage cluster, [(UO2)28(O2)42 - x(OH)2x]28- (U28), was studied with electrospray ionization mass spectrometry (ESI-MS). Experiments including tandem mass spectrometry with collision-induced dissociation (MS/CID/MS), use of natural water and D2O as solvent, and use of N2 and SF6 as nebulizer gases, provide insight into the mechanisms of ionization. The U28 nanocluster under MS/CID/MS with collision energies ranging from 0 to 25 eV produced the monomeric units UOx- (x = 3-8) and UOxHy- (x = 4-8, y = 1, 2). UT under ESI conditions yielded the gas-phase ions UOx- (x = 4-6) and UOxHy- (x = 4-8, y = 1-3). Mechanisms that produce the observed anions in the UT and U28 systems are: (a) gas-phase combinations of uranyl monomers in the collision cell upon fragmentation of U28, (b) reduction-oxidation resulting from the electrospray process, and (c) ionization of surrounding analytes, creating reactive oxygen species that then coordinate to uranyl ions. The electronic structures of anions UOx- (x = 6-8) were investigated using density functional theory (DFT).
ABSTRACT
The co-occurrence of uranyl and arsenate in contaminated water caused by natural processes and mining is a concern for impacted communities, including in Native American lands in the U.S. Southwest. We investigated the simultaneous removal of aqueous uranyl and arsenate after the reaction with limestone and precipitated hydroxyapatite (HAp, Ca10(PO4)6(OH)2). In benchtop experiments with an initial pH of 3.0 and initial concentrations of 1 mM U and As, uranyl and arsenate coprecipitated in the presence of 1 g L-1 limestone. However, related experiments initiated under circumneutral pH conditions showed that uranyl and arsenate remained soluble. Upon addition of 1 mM PO43- and 3 mM Ca2+ in solution (initial concentration of 0.05 mM U and As) resulted in the rapid removal of over 97% of U via Ca-U-P precipitation. In experiments with 2 mM PO43- and 10 mM Ca2+ at pH rising from 7.0 to 11.0, aqueous concentrations of As decreased (between 30 and 98%) circa pH 9. HAp precipitation in solids was confirmed by powder X-ray diffraction and scanning electron microscopy/energy dispersive X-ray. Electron microprobe analysis indicated U was coprecipitated with Ca and P, while As was mainly immobilized through HAp adsorption. The results indicate that natural materials, such as HAp and limestone, can effectively remove uranyl and arsenate mixtures.
Subject(s)
Arsenates , Uranium , Calcium Carbonate , Hydrogen-Ion Concentration , Adsorption , WaterABSTRACT
We investigated the aqueous solubility and thermodynamic properties of two meta-autunite group uranyl arsenate solids (UAs). The measured solubility products (log Ksp) obtained in dissolution and precipitation experiments at equilibrium pH 2 and 3 for NaUAs and KUAs ranged from -23.50 to -22.96 and -23.87 to -23.38, respectively. The secondary phases (UO2)(H2AsO4)2(H2O)(s) and trögerite, (UO2)3(AsO4)2·12H2O(s), were identified by powder X-ray diffraction in the reacted solids of KUA precipitation experiments (pH 2) and NaUAs dissolution and precipitation experiments (pH 3), respectively. The identification of these secondary phases in reacted solids suggest that H3O+ co-occurring with Na or K in the interlayer region can influence the solubilities of uranyl arsenate solids. The standard-state enthalpy of formation from the elements (ΔHf-el) of NaUAs is -3025 ± 22 kJ mol-1 and for KUAs is -3000 ± 28 kJ mol-1 derived from measurements by drop solution calorimetry, consistent with values reported in other studies for uranyl phosphate solids. This work provides novel thermodynamic information for reactive transport models to interpret and predict the influence of uranyl arsenate solids on soluble concentrations of U and As in contaminated waters affected by mining legacy and other anthropogenic activities.
Subject(s)
Arsenates , Solubility , ThermodynamicsABSTRACT
We integrated aqueous chemistry analyses with geochemical modeling to determine the kinetics of the dissolution of Na and K uranyl arsenate solids (UAs(s)) at acidic pH. Improving our understanding of how UAs(s) dissolve is essential to predict transport of U and As, such as in acid mine drainage. At pH 2, Na0.48H0.52(UO2)(AsO4)(H2O)2.5(s) (NaUAs(s)) and K0.9H0.1(UO2)(AsO4)(H2O)2.5(s) (KUAs(s)) both dissolve with a rate constant of 3.2 × 10-7 mol m-2 s-1, which is faster than analogous uranyl phosphate solids. At pH 3, NaUAs(s) (6.3 × 10-8 mol m-2 s-1) and KUAs(s) (2.0 × 10-8 mol m-2 s-1) have smaller rate constants. Steady-state aqueous concentrations of U and As are similarly reached within the first several hours of reaction progress. This study provides dissolution rate constants for UAs(s), which may be integrated into reactive transport models for risk assessment and remediation of U and As contaminated waters.
ABSTRACT
Metaschoepite, [(UO2)8O2(OH)12](H2O)10, maintained in a high relative humidity (RH) environment with air initially transformed into an intermediate phase that subsequently was replaced by the peroxide phase studtite, [(UO2)(O2)(H2O)2](H2O)2, over the course of 42 days, as observed using Raman and infrared spectroscopy and powder X-ray diffraction. Addition of atmospheric ozone vastly increased the rate and extent of the transformation to studtite but only in a high-RH atmosphere. Owing to its strong affinity for peroxide, uranyl reacted with hydrogen peroxide as it formed and precipitated stable studtite. In this work, we provide a previously unidentified source of hydrogen peroxide and make a case for the re-examination of storage systems where the consequences of atmospheric ozone are not considered.
ABSTRACT
The first actinide borosulfates, (UO2)[B(SO4)2(SO3OH)] (TSUBOS-1) and (UO2)2[B2O(SO4)3(SO3OH)2] (TSUBOB-1), were synthesized solvothermally in oleum using UO3. The classical borosulfate crystal structure of TSUBOS-1 is partially consistent with an established conventional hierarchy. Uranyl pentagonal bipyramids limit the anionic network linkages and isolate sulfate tetrahedra within the anionic network. Therefore, the classical one-dimensional chain established in the hierarchy does not fully describe the structure. The structure of TSUBOB-1 is the first actinide borosulfate that contains an unconventional borate-to-borate bridging mode (denoted B-O-B) and a zero-dimensional oxoanionic unit consisting of one sulfate tetrahedron that shares vertices with two B-O-B bridged borate tetrahedra that each share a vertex with two sulfate tetrahedra. As this structure departs from the existing structural hierarchy, a modified approach for understanding the unconventional borosulfate substructure and dimensionality is proposed, together with a new graphical notation. In the course of our synthesis experiments, a novel uranyl disulfate compound (UO2)2[(S2O7)(SO3OH)2] (TSUDS) was isolated and characterized. The structure of TSUDS is a framework consisting of uranyl pentagonal bipyramids and sulfate tetrahedra. Each uranyl pentagonal bipyramid is surrounded by five sulfate tetrahedra, two of which share a vertex creating a disulfate with a S-O-S bridging mode. The uranyl bipyramids are linked to one another via the singular sulfate or disulfate groups.
ABSTRACT
Mechanochemistry enables transformations of highly insoluble materials such as uranium dioxide or the mineral studtite [(UO2)(O2)(H2O)2]·(H2O)2 into uranyl triperoxide compounds that can subsequently assemble into hydroxide-bridged uranyl peroxide dimers in the presence of lithium hydroxide. Dissolution of these solids in water yields uranyl peroxide nanoclusters including U24, Li24[(UO2)(O2)(OH)]24. Insoluble uranium solids can transform into highly soluble uranyl peroxide phases in the solid state with miniscule quantities of water. Such reactions are potentially applicable to uranium processing in the front and back end of the nuclear fuel cycle.
ABSTRACT
Aqueous solutions of lithium uranyl triperoxide, Li4[UO2(O2)3] (LiUT), were irradiated with gamma rays at room temperature and found to form the uranyl peroxide cage cluster, Li24[(UO2)(O2)(OH)]24 (Li-U24). Raman spectroscopy and 18O labeling were used to identify the Raman-active vibrations of LiUT. With these assignments, the concentration of LiUT was tracked as a function of radiation dose. A discrepancy between monomer removal and cluster formation suggests that the reaction proceeds by the assembly of an intermediate. Non-negative matrix factorization was used to separate Raman spectra into components and resulted in the identification of a unique intermediate species. Much of the conversion appears to be driven by water radiolysis products, particularly the hydroxyl radical. This differs from the 18O-labeled copper-catalyzed formation of U24, which progresses at a steady rate with no observation of intermediates. Li-U24 in solution decomposes at high radiation doses resulting in a solid insoluble product similar to Na-compreignacite, Na2(UO2)6O4(OH)6·7H2O, which contains uranyl oxyhydroxy sheets.