Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Platelets ; 29(8): 793-800, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29090586

ABSTRACT

MYH9-related disorders (MYH9-RDs) caused by mutation of the MYH9 gene which encodes non-muscle myosin heavy-chain-IIA (NMMHC-IIA), an important motor protein in hemopoietic cells, are the most commonly encountered cause of inherited macrothrombocytopenia. Despite distinguishing features including an autosomal dominant mode of inheritance, giant platelets on the peripheral blood film accompanied by leucocytes with cytoplasmic inclusion bodies (döhle-like bodies), these disorders remain generally under-recognized and often misdiagnosed as immune thrombocytopenia (ITP). This may result in inappropriate treatment with corticosteroids, immunosupressants and in some cases, splenectomy. We explored the efficacy of next generation sequencing (NGS) with a candidate gene panel to establish the aetiology of thrombocytopenia for individuals who had been referred to our center from hematologists in the Australasian region in whom the cause of thrombocytopenia was suspected to be secondary to an inherited condition but which remained uncharacterized despite phenotypic investigations. Pathogenic MYH9 variants were detected in 15 (15/121, 12.4%) individuals and the pathogenecity of a novel variant of uncertain significance was confirmed in a further two related individuals following immunofluorescence (IF) staining performed in our laboratory. Concerningly, only one (1/17) individual diagnosed with MYH9-RD had been referred with this as a presumptive diagnosis, in all other cases (16/17, 94.1%), a diagnosis was not suspected by referring clinicians, indicating a lack of awareness or a failing of our diagnostic approach to these conditions. We examined the mean platelet diameter (MPD) measurements as a means to better identify and quantify platelet size. MPDs in cases with MYH9-RDs were significantly larger than controls (p < 0.001) and in 91% were greater than a previously suggested threshold for platelets in cases of ITP. In addition, we undertook IF staining in a proportion of cases and confirm that this test and/or NGS are satisfactory diagnostic tests. We propose that fewer cases of MYH9-RDs would be missed if diagnostic algorithms prioritized IF and/or NGS in cases of thrombocytopenia associated with giant platelets, even if döhle-like bodies are not appreciated on the peripheral blood film. Finally, our report describes the long-term use of a thrombopoietin agonist in a case of MYH9-RD that had previously been diagnosed as ITP, and demonstrates that treatment with these agents may be possible, and is well tolerated, in this group of patients.


Subject(s)
Blood Platelets/metabolism , Hearing Loss, Sensorineural/genetics , Mutation , Myosin Heavy Chains/genetics , Purpura, Thrombocytopenic, Idiopathic/genetics , Receptors, Fc/therapeutic use , Recombinant Fusion Proteins/therapeutic use , Thrombocytopenia/congenital , Thrombopoietin/therapeutic use , Adult , Australasia , Blood Platelets/drug effects , Blood Platelets/pathology , Cell Size , Cohort Studies , Diagnosis, Differential , Female , Gene Expression , Gene Expression Profiling , Genes, Dominant , Hearing Loss, Sensorineural/blood , Hearing Loss, Sensorineural/diagnosis , Hearing Loss, Sensorineural/drug therapy , High-Throughput Nucleotide Sequencing , Humans , Inclusion Bodies/drug effects , Inclusion Bodies/metabolism , Inclusion Bodies/pathology , Male , Mean Platelet Volume , Middle Aged , Myosin Heavy Chains/blood , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/diagnosis , Purpura, Thrombocytopenic, Idiopathic/drug therapy , Thrombocytopenia/blood , Thrombocytopenia/diagnosis , Thrombocytopenia/drug therapy , Thrombocytopenia/genetics
2.
Am J Pathol ; 185(7): 1867-76, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26093983

ABSTRACT

E26 transformation-specific 1 (ETS1) and friend leukemia integration 1 (FLI1) are members of the ETS family of transcription factors, of which there are 28 in humans. Both genes are hemizygous in Jacobsen syndrome, an 11q contiguous gene deletion disorder involving thrombocytopenia, facial dysmorphism, growth and mental retardation, malformation of the heart and other organs, and hearing impairment associated with recurrent ear infections. To determine whether any of these defects are because of hemizygosity for ETS1 and FLI1, we characterized the phenotype of mice heterozygous for mutant alleles of Ets1 and Fli1. Fli1(+/-) mice displayed mild thrombocytopenia, as did Ets1(+/-)Fli1(+/-) animals. Fli1(+/-) and Ets1(+/-)Fli1(+/-) mice also displayed craniofacial abnormalities, including a small middle ear cavity, short nasal bone, and malformed interface between the nasal bone process and cartilaginous nasal septum. They exhibited hearing impairment, otitis media, fusions of ossicles to the middle ear wall, and deformed stapes. Hearing impairment was more penetrant and stapes malformations were more severe in Ets1(+/-)Fli1(+/-) mice than in Fli1(+/-) mice, indicating partial functional redundancy of these transcription factors during auditory development. Our findings indicate that the short nose, otitis media, and hearing impairment in Jacobsen syndrome are likely because of hemizygosity for ETS1 and FLI1.


Subject(s)
Disease Models, Animal , Haploinsufficiency , Jacobsen Distal 11q Deletion Syndrome/genetics , Mice , Proto-Oncogene Protein c-ets-1/genetics , Proto-Oncogene Protein c-fli-1/genetics , Animals , Ear, Middle/abnormalities , Female , Genotype , Hearing Loss/genetics , Humans , Male , Mice/abnormalities , Mice/genetics , Nasal Bone/abnormalities , Otitis Media/genetics , Phenotype
3.
Nat Genet ; 36(7): 725-31, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15184899

ABSTRACT

Using a relatively dense genetic map of 72 single-nucleotide polymorphisms (SNPs) distributed across the entire 1.5-Mb locus on chromosome 22q11 associated with susceptibilit to schizophrenia, we previously identified two subregions that were consistently associated with the disease. In the distal subregion, we detected an association signal with five neighboring SNPs distributed over a haplotypic block of 80 kb encompassing six known genes. One of these five SNPs, rs175174, had the strongest association of all 72 SNPs that we tested. Here we show that rs175174 regulates the level of the fully functional transcript by modulating the retention of intron 4 of the gene ZDHHC8, which encodes a putative transmembrane palmitoyltransferase. Zdhhc8-knockout mice had a sexually dimorphic deficit in prepulse inhibition, a gene dosage-dependent decrease in exploratory activity in a new environment and a decreased sensitivity to the locomotor stimulatory effects of the psychomimetic drug dizocilpine (MK801). SNP rs175174 shows differences in transmission distortion between sexes in individuals with schizophrenia. Our results indicate that there is an unexpected connection between impaired palmitate modification of neuronal proteins and the psychiatric phenotypes associated with microdeletions of chromosome 22q11.


Subject(s)
Acyltransferases/genetics , Genetic Predisposition to Disease , Membrane Proteins/genetics , Schizophrenia/genetics , Acyltransferases/chemistry , Alternative Splicing , Amino Acid Sequence , Animals , Base Sequence , DNA , Dizocilpine Maleate/administration & dosage , Excitatory Amino Acid Antagonists/administration & dosage , Exons , Membrane Proteins/chemistry , Mice , Mice, Knockout , Molecular Sequence Data , Sequence Homology, Amino Acid
4.
Antib Ther ; 6(4): 277-297, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38075238

ABSTRACT

Background: Due to COVID-19, pandemic preparedness emerges as a key imperative, necessitating new approaches to accelerate development of reagents against infectious pathogens. Methods: Here, we developed an integrated approach combining synthetic, computational and structural methods with in vitro antibody selection and in vivo immunization to design, produce and validate nature-inspired nanoparticle-based reagents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Results: Our approach resulted in two innovations: (i) a thermostable nasal vaccine called ADDoCoV, displaying multiple copies of a SARS-CoV-2 receptor binding motif derived epitope and (ii) a multivalent nanoparticle superbinder, called Gigabody, against SARS-CoV-2 including immune-evasive variants of concern (VOCs). In vitro generated neutralizing nanobodies and electron cryo-microscopy established authenticity and accessibility of epitopes displayed by ADDoCoV. Gigabody comprising multimerized nanobodies prevented SARS-CoV-2 virion attachment with picomolar EC50. Vaccinating mice resulted in antibodies cross-reacting with VOCs including Delta and Omicron. Conclusion: Our study elucidates Adenovirus-derived dodecamer (ADDomer)-based nanoparticles for use in active and passive immunization and provides a blueprint for crafting reagents to combat respiratory viral infections.

5.
J Immunol ; 184(2): 859-68, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20007538

ABSTRACT

Autoimmune lymphocytic infiltration of the salivary glands, termed sialadenitis, is a pathologic feature of Sjögren's syndrome (SjS) that is also prominent in nonobese diabetic (NOD) mice. Genetic factors regulate sialadenitis, and a previous (NOD x NZW)F2 study detected linkage to murine chromosome (Chr) 7. The locus, subsequently annotated as Ssial3, maps to the distal end of Chr7 and overlaps a region associated with type 1 diabetes susceptibility in NOD mice. To examine whether Ssial3 could contribute to both diseases, or was specific for SjS, we generated a congenic mouse strain that harbored an NZW-derived Chr7 interval on the NOD genetic background. This congenic strain exhibited reduced sialadenitis compared with NOD mice and confirmed Ssial3. This reduction, however, did not ameliorate saliva abnormalities associated with SjS-like disease in NOD mice, nor were congenic mice protected against insulitis (lymphocytic infiltration of the pancreatic islets) or diabetes onset. Thus, the Ssial3 locus appears to have a tissue-specific effect for which the NZW allele is unable to prevent other autoimmune traits in the NOD mouse. Anomalous increases for antinuclear Ab production and frequency of marginal-zone B cells were also identified in congenic mice, indicating that the NZW-derived Chr7 interval has a complex effect on the NOD immune system.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Genetic Linkage , Sialadenitis/genetics , Animals , Antibodies, Antinuclear/biosynthesis , B-Lymphocytes/pathology , Chromosome Mapping , Chromosomes , Genetic Predisposition to Disease , Mice , Mice, Congenic , Mice, Inbred NOD
6.
J Mol Med (Berl) ; 100(5): 797-813, 2022 05.
Article in English | MEDLINE | ID: mdl-35471608

ABSTRACT

Aminoglycoside antibiotics are lifesaving medicines, crucial for the treatment of chronic or drug resistant infections. However, aminoglycosides are toxic to the sensory hair cells in the inner ear. As a result, aminoglycoside-treated individuals can develop permanent hearing loss and vestibular impairment. There is considerable evidence that reactive oxygen species (ROS) production and the subsequent phosphorylation of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (P38) drives apoptosis in aminoglycoside-treated hair cells. However, treatment strategies that directly inhibit ROS, JNK, or P38 are limited by the importance of these molecules for normal cellular function. Alternatively, the upstream regulator apoptosis signal-regulating kinase 1 (ASK1/MAP3K5) is a key mediator of ROS-induced JNK and P38 activation under pathologic but not homeostatic conditions. We investigated ASK1 as a mediator of drug-induced hair cell death using cochlear explants from Ask1 knockout mice, demonstrating that Ask1 deficiency attenuates neomycin-induced hair cell death. We then evaluated pharmacological inhibition of ASK1 with GS-444217 as a potential otoprotective therapy. GS-444217 significantly attenuated hair cell death in neomycin-treated explants but did not impact aminoglycoside efficacy against P. aeruginosa in the broth dilution test. Overall, we provide significant pre-clinical evidence that ASK1 inhibition represents a novel strategy for preventing aminoglycoside ototoxicity. KEY MESSAGES: ASK1 is an upstream, redox-sensitive regulator of P38 and JNK, which are known mediators of hair cell death. Ask1 knockout does not affect hair cell development in vivo, but significantly reduces aminoglycoside-induced hair cell death in vitro. A small-molecule inhibitor of ASK1 attenuates neomycin-induced hair cell death, and does not impact antibiotic efficacy in vitro. ASK1 may be a novel molecular target for preventing aminoglycoside-induced hearing loss.


Subject(s)
Aminoglycosides , Hair Cells, Auditory , Hearing Loss , MAP Kinase Kinase Kinase 5 , Aminoglycosides/adverse effects , Animals , Anti-Bacterial Agents/adverse effects , Apoptosis/drug effects , Cell Death/drug effects , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Hearing Loss/chemically induced , Hearing Loss/metabolism , Hearing Loss/pathology , Hearing Loss/prevention & control , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase Kinase 5/metabolism , Mice , Neomycin/adverse effects , Reactive Oxygen Species/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
7.
iScience ; 24(8): 102875, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34386733

ABSTRACT

Lak phages with alternatively coded ∼540 kbp genomes were recently reported to replicate in Prevotella in microbiomes of humans that consume a non-Western diet, baboons, and pigs. Here, we explore Lak phage diversity and broader distribution using diagnostic polymerase chain reaction and genome-resolved metagenomics. Lak phages were detected in 13 animal types, including reptiles, and are particularly prevalent in pigs. Tracking Lak through the pig gastrointestinal tract revealed significant enrichment in the hindgut compared to the foregut. We reconstructed 34 new Lak genomes, including six curated complete genomes, all of which are alternatively coded. An anomalously large (∼660 kbp) complete genome reconstructed for the most deeply branched Lak from a horse microbiome is also alternatively coded. From the Lak genomes, we identified proteins associated with specific animal species; notably, most have no functional predictions. The presence of closely related Lak phages in diverse animals indicates facile distribution coupled to host-specific adaptation.

8.
Hear Res ; 386: 107870, 2020 02.
Article in English | MEDLINE | ID: mdl-31864009

ABSTRACT

Many drugs on the World Health Organization's list of critical medicines are ototoxic, destroying sensory hair cells within the ear. These drugs preserve life, but patients can experience side effects including permanent hearing loss and vestibular dysfunction. Aminoglycoside ototoxicity was first recognised 80 years ago. However, no preventative treatments have been developed. In order to develop such treatments, we must identify the factors driving hair cell death. In vivo, studies of cell death are typically conducted using mouse models. However, a robust model of aminoglycoside ototoxicity does not exist. Previous studies testing aminoglycoside delivery via intraperitoneal or subcutaneous injection have produced variable ototoxic effects in the mouse. As a result, surgical drug delivery to the rodent ear is often used to achieve ototoxicity. However, this technique does not accurately model clinical practice. In the clinic, aminoglycosides are administered to humans intravenously (i.v.). However, repeated i.v. delivery has not been reported in the mouse. This study evaluated whether repeated i.v. administration of amikacin or tobramycin would induce hearing loss. Daily i.v. injections over a two-week period were well tolerated and transient low frequency hearing loss was observed in the aminoglycoside treatment groups. However, the hearing changes observed did not mimic the high frequency patterns of hearing loss observed in humans. Our results indicate that the i.v. delivery of tobramycin or amikacin is not an effective technique for inducing ototoxicity in mice. This result is consistent with previously published reports indicating that the mouse cochlea is resistant to systemically delivered aminoglycoside ototoxicity.


Subject(s)
Amikacin/administration & dosage , Anti-Bacterial Agents/administration & dosage , Tobramycin/administration & dosage , Amikacin/toxicity , Animals , Anti-Bacterial Agents/adverse effects , Drug Administration Schedule , Hearing/drug effects , Hearing Loss/chemically induced , Hearing Loss/physiopathology , Injections, Intravenous , Kidney/drug effects , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Mice, Inbred C57BL , Ototoxicity , Species Specificity , Time Factors , Tobramycin/toxicity
9.
Sci Transl Med ; 12(546)2020 06 03.
Article in English | MEDLINE | ID: mdl-32493795

ABSTRACT

Most genetic diseases arise from recessive point mutations that require correction, rather than disruption, of the pathogenic allele to benefit patients. Base editing has the potential to directly repair point mutations and provide therapeutic restoration of gene function. Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant or recessive deafness. We developed a base editing strategy to treat Baringo mice, which carry a recessive, loss-of-function point mutation (c.A545G; resulting in the substitution p.Y182C) in Tmc1 that causes deafness. Tmc1 encodes a protein that forms mechanosensitive ion channels in sensory hair cells of the inner ear and is required for normal auditory function. We found that sensory hair cells of Baringo mice have a complete loss of auditory sensory transduction. To repair the mutation, we tested several optimized cytosine base editors (CBEmax variants) and guide RNAs in Baringo mouse embryonic fibroblasts. We packaged the most promising CBE, derived from an activation-induced cytidine deaminase (AID), into dual adeno-associated viruses (AAVs) using a split-intein delivery system. The dual AID-CBEmax AAVs were injected into the inner ears of Baringo mice at postnatal day 1. Injected mice showed up to 51% reversion of the Tmc1 c.A545G point mutation to wild-type sequence (c.A545A) in Tmc1 transcripts. Repair of Tmc1 in vivo restored inner hair cell sensory transduction and hair cell morphology and transiently rescued low-frequency hearing 4 weeks after injection. These findings provide a foundation for a potential one-time treatment for recessive hearing loss and support further development of base editing to correct pathogenic point mutations.


Subject(s)
Deafness , Membrane Proteins , Animals , Deafness/genetics , Deafness/therapy , Fibroblasts , Hair Cells, Auditory , Hearing/genetics , Humans , Mice
10.
Front Immunol ; 11: 604913, 2020.
Article in English | MEDLINE | ID: mdl-33603740

ABSTRACT

We have used the pig, a large natural host animal for influenza with many physiological similarities to humans, to characterize αß, γδ T cell and antibody (Ab) immune responses to the 2009 pandemic H1N1 virus infection. We evaluated the kinetic of virus infection and associated response in inbred Babraham pigs with identical MHC (Swine Leucocyte Antigen) and compared them to commercial outbred animals. High level of nasal virus shedding continued up to days 4 to 5 post infection followed by a steep decline and clearance of virus by day 9. Adaptive T cell and Ab responses were detectable from days 5 to 6 post infection reaching a peak at 9 to 14 days. γδ T cells produced cytokines ex vivo at day 2 post infection, while virus reactive IFNγ producing γδ T cells were detected from day 7 post infection. Analysis of NP tetramer specific and virus specific CD8 and CD4 T cells in blood, lung, lung draining lymph nodes, and broncho-alveolar lavage (BAL) showed clear differences in cytokine production between these tissues. BAL contained the most highly activated CD8, CD4, and γδ T cells producing large amounts of cytokines, which likely contribute to elimination of virus. The weak response in blood did not reflect the powerful local lung immune responses. The immune response in the Babraham pig following H1N1pdm09 influenza infection was comparable to that of outbred animals. The ability to utilize these two swine models together will provide unparalleled power to analyze immune responses to influenza.


Subject(s)
Antibodies, Viral/blood , Influenza A Virus, H1N1 Subtype/immunology , Orthomyxoviridae Infections/virology , T-Lymphocyte Subsets/virology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Cytokines/metabolism , Disease Models, Animal , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Host-Pathogen Interactions , Inbreeding , Influenza A Virus, H1N1 Subtype/pathogenicity , Kinetics , Orthomyxoviridae Infections/blood , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Species Specificity , Sus scrofa , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Viral Load , Virus Shedding
11.
Eur J Hum Genet ; 28(5): 587-596, 2020 05.
Article in English | MEDLINE | ID: mdl-31827275

ABSTRACT

Congenital hearing impairment (HI) is the most common sensory impairment and can be isolated or part of a syndrome. Diagnosis through newborn hearing screening and management through early intervention, hearing aids and cochlear implantation is well established in the Australian setting; however understanding the genetic basis of congenital HI has been missing. This population-derived cohort comprised infants with moderate-profound bilateral HI born in the 2016-2017 calendar years, detected through newborn hearing screening. Participants were recruited through an integrated paediatric, otolaryngology and genetics HI clinic and offered whole exome sequencing (WES) on a HiSeq4000 or NextSeq500 (Illumina) platform with a targeted average sequencing depth of 100x and chromosome microarray on the Illumina Infinium core exome-24v1.2 platform. Of those approached, 68% (106/156) consented to participate. The rate of genetic diagnosis was 56% (59/106), significantly higher than standard of care (GJB2/6 sequencing only), 21% (22/106). There were clinical implications for the 106 participants: 36% required no further screening, 9% had tailored screening initiated, 2% were offered treatment and 4% had informed care for a complex neurodevelopmental syndrome. WES in this cohort demonstrates the range of diagnoses associated with congenital HI and confirms the genetic heterogeneity of congenital HI. The high diagnostic yield and clinical implications emphasises the need for genomic sequencing to become standard of care.


Subject(s)
Exome Sequencing/standards , Genetic Testing/standards , Hearing Loss/genetics , Neonatal Screening/standards , Female , Genetic Testing/methods , Hearing Loss/diagnosis , Humans , Infant , Infant, Newborn , Male , Neonatal Screening/methods , Sensitivity and Specificity , Exome Sequencing/methods
12.
Int J Neuropsychopharmacol ; 12(7): 983-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19519974

ABSTRACT

Animal models have been useful in elucidating the genetic basis of the cognitive and behavioural phenotypes associated with the 22q11.2 microdeletions. Loss-of-function models have implicated a number of genes as playing a role in prepulse inhibition (PPI) of the startle response. Here, we report the generation and initial analysis of bacterial artificial chromosome (BAC) transgenic (Tg) mice, overexpressing genes from within the 22q11.2 locus. We used engineered BAC constructs to generate Tg lines and quantitative RT-PCR to assess levels of gene expression in each line. We assessed PPI and open-field activity in mice from two low copy number lines. In Tg-1, a line overexpressing Prodh and Vpreb2, PPI was significantly increased at prepulse levels of 78 dB and 82 dB while no differences were found in activity measures. By contrast, no significant differences were found in PPI testing of the Tg-2 line overexpressing Zdhhc8, Ranbp1, Htf9c, T10, Arvcf and Comt. Taken together with previous loss-of-function reports, these findings suggest that Prodh has a key role in modulating the degree of sensorimotor gating in mice and possibly in humans and provide additional support for an important role of this pathway in modulating behavioural deficits associated with genomic gains or losses at 22q11.2.


Subject(s)
Behavior, Animal , Chromosomes, Mammalian , Reflex, Startle/genetics , Acoustic Stimulation , Animals , Chromosomes, Artificial, Bacterial , Genes, Reporter , Genotype , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Immunoglobulin Light Chains, Surrogate/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Phenotype , Proline Oxidase/genetics , Sensory Gating/genetics
13.
Front Cell Neurosci ; 13: 170, 2019.
Article in English | MEDLINE | ID: mdl-31130846

ABSTRACT

The inner ear is a complex organ containing highly specialised cell types and structures that are critical for sensing sound and movement. In vivo, the inner ear is difficult to study due to the osseous nature of the otic capsule and its encapsulation within an intricate bony labyrinth. As such, mammalian inner ear explants are an invaluable tool for the study and manipulation of the complex intercellular connections, structures, and cell types within this specialised organ. The greatest strength of this technique is that the complete organ of Corti, or peripheral vestibular organs including hair cells, supporting cells and accompanying neurons, is maintained in its in situ form. The greatest weakness of in vitro hair cell preparations is the short time frame in which the explanted tissue remains viable. Yet, cochlear explants have proven to be an excellent experimental model for understanding the fundamental aspects of auditory biology, substantiated by their use for over 40 years. In this protocol, we present a modernised inner ear explant technique that employs organotypic cell culture inserts and serum free media. This approach decreases the likelihood of explant damage by eliminating the need for adhesive substances. Serum free media also restricts excessive cellular outgrowth and inter-experimental variability, both of which are side effects of exogenous serum addition to cell cultures. The protocol described can be applied to culture both cochlear and vestibular explants from various mammals. Example outcomes are demonstrated by immunohistochemistry, hair cell quantification, and electrophysiological recordings to validate the versatility and viability of the protocol.

14.
Acad Pediatr ; 19(5): 504-514, 2019 07.
Article in English | MEDLINE | ID: mdl-30872125

ABSTRACT

BACKGROUND: Better epidemiologic information on childhood hearing loss would inform research priorities and efforts to prevent its progression. OBJECTIVES: To estimate prevalence and secular trends in children's hearing loss. DATA SOURCES: We searched MEDLINE and Embase from January 1996 to August 2017. STUDY ELIGIBILITY CRITERIA: We included epidemiologic studies in English reporting hearing loss prevalence. STUDY APPRAISAL AND SYNTHESIS METHODS: The modified Leboeuf-Yde and Lauritsen tool was used to assess methodological quality. Meta-analyses combined study-specific estimates using random-effects models. PARTICIPANTS: Children 0 to 18 years of age. RESULTS: Among 88 eligible studies, 43.2% included audiometric measurement of speech frequencies. In meta-analyses, pooled prevalence estimates of slight or worse bilateral speech frequency losses >15 decibels hearing level (dB HL) were 13.1% (95% confidence interval [CI], 10.0-17.0). Using progressively more stringent cutpoints, pooled prevalence estimates were 8.1% (95% CI, 1.3-19.8) with >20 dB HL, 2.2% (95% CI, 1.4-3.0) with >25 dB HL, 1.8% (95% CI, 0.4-4.1) with >30 dB HL, and 0.9% (95% CI, 0.1-2.6) with >40 dB HL. Also, 8.9% (95% CI, 6.4-12.3) had likely sensorineural losses >15 dB HL in 1 or both ears, and 1.2% (95% CI, 0.5-2.1) had self-reported hearing loss. From 1990 to 2010, the prevalence of losses >15 dB HL in 1 or both ears rose substantially (all P for trend <.001). LIMITATIONS: The studies had high heterogeneity and offered limited information for hearing loss types and secular trend. CONCLUSIONS AND IMPLICATIONS: Childhood slight or worse hearing loss is prevalent and may be increasing. Advances in understanding hearing loss trajectories, causes, and prevention would require international repositories and longitudinal studies with audiometric data beginning in childhood. SYSTEMATIC REVIEW REGISTRATION NUMBER: PROSPERO 2016 CRD42016034148.


Subject(s)
Hearing Loss/epidemiology , Adolescent , Child , Child, Preschool , Hearing Loss/diagnosis , Humans , Infant , Infant, Newborn , Prevalence
15.
Vaccine ; 37(26): 3495-3504, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31103366

ABSTRACT

The pneumococcus remains a common cause of otitis media (OM) despite the widespread introduction of pneumococcal conjugate vaccines. In mice, a pneumococcal whole cell vaccine (WCV) induces serotype-independent protection against pneumococcal colonisation and invasive disease via TH17- and antibody-mediated immunity, respectively. We investigated the effect of WCV on influenza A-induced pneumococcal OM in an infant mouse model. C57BL/6 mice were immunised subcutaneously with a single dose of WCV or adjuvant at 6 days of age, infected with pneumococci (EF3030 [serotype 19F] or PMP1106 [16F]) at 12 days of age, and given influenza A virus (A/Udorn/72/307 [H3N2], IAV) at 18 days of age to induce pneumococcal OM. Pneumococcal density in middle ear and nasopharyngeal tissues was determined 6 and 12 days post-virus. Experiments were repeated in antibody (B6.µMT-/-)- and CD4+ T-cell-deficient mice to investigate the immune responses involved. A single dose of WCV did not prevent the development of pneumococcal OM, nor accelerate pneumococcal clearance compared with mice receiving adjuvant alone. However, WCV reduced the density of EF3030 in the middle ear at 6 days post-viral infection (p = 0.022), and the density of both isolates in the nasopharynx at 12 days post-viral infection (EF3030, p = 0.035; PMP1106, p = 0.011), compared with adjuvant alone. The reduction in density in the middle ear required antibodies and CD4+ T cells: WCV did not reduce EF3030 middle ear density in B6.µMT-/- mice (p = 0.35) nor in wild-type mice given anti-CD4 monoclonal antibody before and after IAV inoculation (p = 0.91); and WCV-immunised CD4+ T cell-deficient GK1.5 mice had higher levels of EF3030 in the middle ear than their adjuvant-immunised counterparts (p = 0.044). A single subcutaneous dose of WCV reduced pneumococcal density in the middle ears of co-infected mice in one of two strains tested, but did not prevent OM from occurring in this animal model.


Subject(s)
Influenza A Virus, H3N2 Subtype/immunology , Orthomyxoviridae Infections/immunology , Otitis Media/immunology , Pneumococcal Infections/immunology , Pneumococcal Vaccines/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Carrier State/immunology , Disease Models, Animal , Ear, Middle/immunology , Mice , Mice, Inbred C57BL , Nasopharynx , Serogroup , Vaccination/methods , Vaccines, Conjugate/immunology
16.
Sci Rep ; 8(1): 5482, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615807

ABSTRACT

Alternate splicing is a critical regulator of gene expression in eukaryotes, however genetic mutations can cause erroneous splicing and disease. Most recorded splicing disorders are caused by mutations of splice donor/acceptor sites, however intronic mutations can affect splicing. Clinical exome analyses largely ignore intronic sequence, limiting the detection of mutations to within coding regions. We describe 'Trooper', a novel mouse model of CHARGE syndrome harbouring a pathogenic point mutation in Chd7. The mutation is 18 nucleotides upstream of exon 10 and creates a cryptic acceptor site, causing exon skipping and partial intron retention. This mutation, though detectable in exome sequence, was initially dismissed by computational filtering due to its intronic location. The Trooper strain exhibited many of the previously described CHARGE-like anomalies of CHD7 deficient mouse lines; including hearing impairment, vestibular hypoplasia and growth retardation. However, more common features such as facial asymmetry and circling were rarely observed. Recognition of these characteristic features prompted manual reexamination of Chd7 sequence and subsequent validation of the intronic mutation, highlighting the importance of phenotyping alongside exome analyses. The Trooper mouse serves as a valuable model of atypical CHARGE syndrome and reveals a molecular mechanism that may underpin milder clinical presentation of the syndrome.


Subject(s)
CHARGE Syndrome/genetics , DNA-Binding Proteins/genetics , Introns/genetics , Mutation , RNA Splice Sites/genetics , RNA Splicing/genetics , Animals , Base Sequence , CHARGE Syndrome/physiopathology , Disease Models, Animal , Hearing/genetics , Male , Mice , Mice, Inbred BALB C , Phenotype
17.
Arch Dis Child ; 103(6): 579-585, 2018 06.
Article in English | MEDLINE | ID: mdl-29386180

ABSTRACT

OBJECTIVE: In a national study of Australian children aged 11-12 years old, we examined the (1) prevalence and characteristics of hearing loss, (2) its demographic risk factors and (3) evidence for secular increases since 1990. METHODS: This is a cross-sectional CheckPoint wave within the Longitudinal Study of Australian Children. 1485 children (49.8% retention; 49.7% boys) underwent air-conduction audiometry. Aim 1: hearing loss (≥16 decibels hearing level (dB HL)) was defined in four ways to enable prior/future comparisons: high Fletcher Index (mean of 1, 2 and 4 kHz; primary outcome relevant to speech perception), four-frequency (1, 2, 4 and 8 kHz), lower frequency (1 and 2 kHz) and higher frequency (4 and 8 kHz); aim 2: logistic regression of hearing loss by age, gender and disadvantage index; and aim 3: P for trend examining CheckPoint and reported prevalence in studies arranged by date since 1990. RESULTS: For high Fletcher Index, the prevalence of bilateral and unilateral hearing loss ≥16 dB HL was 9.3% and 13.3%, respectively. Slight losses (16-25 dB HL) were more prevalent than mild or greater (≥26 dB HL) losses (bilateral 8.5% vs 0.8%; unilateral 12.5% vs 0.9%), and lower frequency more prevalent than higher frequency losses (bilateral 11.0% vs 6.9%; unilateral 15.4% vs 11.5%). Demographic characteristics did not convincingly predict hearing loss. Prevalence of bilateral/unilateral lower and higher frequency losses ≥16 dB HL has risen since 1990 (all P for trend <0.001). CONCLUSIONS AND RELEVANCE: Childhood hearing loss is prevalent and has risen since 1990. Future research should investigate the causes, course and impact of these changes.


Subject(s)
Hearing Loss/epidemiology , Acoustic Impedance Tests , Audiometry , Australia/epidemiology , Child , Cross-Sectional Studies , Female , Hearing Loss, Bilateral/epidemiology , Hearing Loss, High-Frequency/epidemiology , Hearing Loss, Unilateral/epidemiology , Humans , Male , Prevalence , Risk Factors
18.
Front Immunol ; 9: 1061, 2018.
Article in English | MEDLINE | ID: mdl-29868021

ABSTRACT

Epidemiological studies have demonstrated that exposure to farm environments during childhood can be linked to reductions in the incidence of immune disorders, but generating an appropriate model is difficult. 108 half-sibling piglets were born on either extensive (outdoor) or intensive (indoor) farms: at 1 day old, a subset of piglets from each litter were transferred to a high-hygiene isolator facility to create differences in rearing environment either during birth/first day or during the subsequent 56 days of life. Interactions between CD14, CD16, MHCIIDR, and capillary endothelium were assessed using four-color quantitative fluorescence immunohistology. Effects of birth and rearing environment on the antigen-presenting microenvironment of the proximal and distal jejunum (professional and stromal) were apparent at 5, 28, and 56 days after birth However, effects on CD4+CD25+Foxp3+ regulatory T-cells (Tregs) in the intestinal mucosa were apparent around weaning at 28 days but had disappeared by 56 days. These Tregs were reduced in the isolator piglets compared to their farm-reared siblings, but this effect was less marked in piglets born on the extensive farm and required administration of antibiotics. Our results suggest that there may be at least two windows of opportunity in which different farm environments were influencing immune development: one during the perinatal period (up to the first day of life), and one during later infancy. Furthermore, the differences on Tregs suggest that the effects of early life influences may be particularly critical around weaning.


Subject(s)
Adaptation, Physiological , Anti-Bacterial Agents/pharmacology , Environmental Exposure , Farms , Immunity, Mucosal , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Animals , Animals, Newborn , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Biomarkers , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Fluorescent Antibody Technique , Immunity, Mucosal/drug effects , Intestinal Mucosa/drug effects , Swine , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Weaning
20.
BMJ Paediatr Open ; 1(1): e000119, 2017.
Article in English | MEDLINE | ID: mdl-29637142

ABSTRACT

INTRODUCTION: The aetiology of congenital hearing loss is heterogeneous, and in many infants a genetic cause is suspected. Parents face a diagnostic odyssey when searching for a cause of their infant's hearing loss. Through the Melbourne Genomics Health Alliance, a prospective cohort of infants will be offered whole-exome sequencing (WES) with targeted analysis in conjunction with chromosome microarray to determine the genetic causes of congenital hearing loss. Parents will also be offered the opportunity to receive additional results from their infant's WES. METHODS: Eligible infants will be identified through the Victorian Infant Hearing Screening Program and offered an appointment in a paediatrician-run clinic, a genetics assessment and enrolment in the Victorian Childhood Hearing Impairment Longitudinal Databank. If parents consent to WES, genes causing deafness will be analysed and they can choose to obtain additional findings. For the additional results component, a modified laboratory protocol has been designed for reporting of results in the absence of a relevant phenotype. Parents' experience of being offered WES will be evaluated using surveys. DISCUSSION: This project will provide descriptive analysis of the genetic aetiology of congenital hearing loss in this cohort and may provide data on genotype-phenotype correlations. Additionally, choices regarding additional findings will be analysed. Participants will represent a diverse cross section of the population, increasing the ability to generalise results beyond the study group. Evaluation surveys will allow analysis of preferences around counselling, usefulness of a decision aid and adequacy of information provision.

SELECTION OF CITATIONS
SEARCH DETAIL