Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Gen Virol ; 96(8): 2079-2085, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25934793

ABSTRACT

Punta Toro virus (PTV), a member of the PTV complex, is a relatively common causative agent of febrile illness in Panama that is often misdiagnosed as 'dengue' or 'influenza'. Currently, only two named members make up this species complex, PTV and Buenaventura virus (BUEV). Genomic and antigenic characterization of 17 members of the PTV complex, nine of which were isolated from human acute febrile illness cases, reveals that this species complex is composed of six distant viruses. We propose to add four additional new viruses, designated Leticia virus, Cocle virus, Campana virus and Capira virus.


Subject(s)
Bunyaviridae Infections/virology , Fever/virology , Phlebovirus/isolation & purification , Animals , Antibodies, Viral , Bunyaviridae Infections/immunology , Cross Reactions , Fever/immunology , Humans , Insect Vectors/virology , Molecular Sequence Data , Panama , Phlebovirus/classification , Phlebovirus/genetics , Phlebovirus/immunology , Phylogeny , Psychodidae/virology
2.
J Gen Virol ; 95(Pt 2): 292-300, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24096318

ABSTRACT

Genomic and antigenic characterization of members of the Sandfly fever Naples virus (SFNV) complex reveals the presence of five clades that differ in their geographical distribution. Saint Floris and Gordil viruses, both found in Africa, form one clade; Punique, Granada and Massilia viruses, all isolated in the western Mediterranean, constitute a second; Toscana virus, a third; SFNV isolates from Italy, Cyprus, Egypt and India form a fourth; while Tehran virus and a Serbian isolate Yu 8/76, represent a fifth. Interestingly, this last clade appears not to express the second non-structural protein ORF. Karimabad virus, previously classified as a member of the SFNV complex, and Gabek Forest virus are distinct and form a new species complex (named Karimabad) in the Phlebovirus genus. In contrast with the high reassortment frequency observed in some South American phleboviruses, the only virus of the SFNV complex with evidence of reassortment was Granada virus.


Subject(s)
Phlebotomus Fever/virology , Phlebovirus/classification , Phlebovirus/genetics , Phylogeography , RNA, Viral/genetics , Humans , Molecular Sequence Data , Phlebovirus/isolation & purification , Reassortant Viruses/classification , Reassortant Viruses/genetics , Recombination, Genetic , Sequence Analysis, DNA
3.
J Gen Virol ; 93(Pt 2): 293-298, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21994326

ABSTRACT

Jos virus (JOSV), originally isolated in Jos, Nigeria in 1967, has remained unclassified despite cultivation in tissue culture, development of animal models of infection and implementation of seroprevalence surveys for infection. Here, we report genetic, ultrastructural and serological evidence that JOSV is an orthomyxovirus distinct from but phylogenetically related to viruses of the genus Thogotovirus.


Subject(s)
Antigens, Viral/immunology , Genome, Viral , Thogotovirus/genetics , Thogotovirus/immunology , Viral Proteins/immunology , Animals , Cluster Analysis , Mice , Microscopy, Electron, Transmission , Molecular Sequence Data , Nigeria , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Thogotovirus/classification , Thogotovirus/ultrastructure , Virion/ultrastructure
4.
Emerg Infect Dis ; 17(4): 711-3, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21470468

ABSTRACT

The genetic relatedness of mountain gorillas and humans has led to concerns about interspecies transmission of infectious agents. Human-to-gorilla transmission may explain human metapneumovirus in 2 wild mountain gorillas that died during a respiratory disease outbreak in Rwanda in 2009. Surveillance is needed to ensure survival of these critically endangered animals.


Subject(s)
Ape Diseases/epidemiology , Gorilla gorilla/virology , Metapneumovirus/physiology , Paramyxoviridae Infections/veterinary , Animals , Ape Diseases/mortality , Ape Diseases/transmission , Bayes Theorem , Female , Humans , Male , Metapneumovirus/genetics , Molecular Sequence Data , Paramyxoviridae Infections/epidemiology , Paramyxoviridae Infections/mortality , Paramyxoviridae Infections/transmission , RNA, Viral/genetics , Rwanda/epidemiology , Sequence Analysis
5.
Medicina (B Aires) ; 70(6): 518-23, 2010.
Article in English | MEDLINE | ID: mdl-21163739

ABSTRACT

While worldwide pandemic influenza A(H1N1) pdm case fatality rate (CFR) was 0.4%, Argentina's was 4.5%. A total of 34 strains from mild and severe cases were analyzed. A full genome sequencing was carried out on 26 of these, and a partial sequencing on the remaining eight. We observed no evidence that the high CFR can be attributed to direct virus changes. No evidence of re-assortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence was observed. Although the mutation D225G associated with severity in the latest reports from the Ukraine and Norway is not observed among the Argentine strains, an amino acid change in the area (S206T) surrounding the HA receptor binding domain was observed, the same previously established worldwide.


Subject(s)
DNA, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , Mutation/genetics , Adolescent , Adult , Argentina/epidemiology , Child , Child, Preschool , Cluster Analysis , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/mortality , Male , Middle Aged , Molecular Sequence Data , RNA, Viral/genetics , Receptors, Virus/genetics , Reproducibility of Results , Severity of Illness Index , Young Adult
6.
PLoS One ; 4(12): e8540, 2009 Dec 31.
Article in English | MEDLINE | ID: mdl-20046873

ABSTRACT

BACKGROUND: Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease. METHODS/PRINCIPAL FINDINGS: We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004). In subjects 6 to 55 years of age, the adjusted odds ratio (OR) of severe disease in the presence of S. pneumoniae was 125.5 (95% confidence interval [CI], 16.95, 928.72; p<0.0001). CONCLUSIONS/SIGNIFICANCE: The association of S. pneumoniae with morbidity and mortality is established in the current and previous influenza pandemics. However, this study is the first to demonstrate the prognostic significance of non-invasive antemortem diagnosis of S. pneumoniae infection and may provide insights into clinical management.


Subject(s)
Disease Outbreaks , Influenza A Virus, H1N1 Subtype/physiology , Influenza, Human/microbiology , Influenza, Human/pathology , Pneumococcal Infections/complications , Pneumococcal Infections/microbiology , Streptococcus pneumoniae/physiology , Adolescent , Adult , Argentina/epidemiology , Bodily Secretions/microbiology , Bodily Secretions/virology , Child , Female , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Male , Middle Aged , Pneumococcal Infections/virology , Polymerase Chain Reaction , Risk Factors , Young Adult
7.
Medicina (B.Aires) ; 70(6): 518-523, dic. 2010. ilus, tab
Article in English | LILACS | ID: lil-633799

ABSTRACT

While worldwide pandemic influenza A(H1N1) pdm case fatality rate (CFR) was 0.4%, Argentina's was 4.5%. A total of 34 strains from mild and severe cases were analyzed. A full genome sequencing was carried out on 26 of these, and a partial sequencing on the remaining eight. We observed no evidence that the high CFR can be attributed to direct virus changes. No evidence of re-assortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence was observed. Although the mutation D225G associated with severity in the latest reports from the Ukraine and Norway is not observed among the Argentine strains, an amino acid change in the area (S206T) surrounding the HA receptor binding domain was observed, the same previously established worldwide.


Mientras que la tasa de letalidad (CFR) para (H1N1)pdm en todo el mundo era del 0.4%, en la Argentina la mortalidad observada fue de 4.5%. La secuenciación del genoma completo de 26 cepas de virus argentinos de influenza A (H1N1)pdm de casos leves y graves y de 8 cepas secuenciadas parcialmente no mostró evidencia de que la elevada tasa de letalidad se pueda atribuir directamente a cambios en el virus. No se encontraron hallazgos de recombinación, de mutaciones asociadas con la resistencia a los medicamentos antivirales ni de variaciones genéticas que puedan contribuir a la virulencia observada. Si bien la mutación D225G asociada con la gravedad, comunicada en informes procedentes de Ucrania y Noruega, no se ha encontrado en las cepas argentinas estudiadas, se ha observado un cambio aminoacídico en la región (S206T) en torno al dominio del sitio de unión al receptor en la HA, el mismo hallado en cepas distribuidas alrededor del mundo.


Subject(s)
Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult , DNA, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/virology , Mutation/genetics , Argentina/epidemiology , Cluster Analysis , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza, Human/mortality , Molecular Sequence Data , Reproducibility of Results , RNA, Viral/genetics , Receptors, Virus/genetics , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL